Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
LR Parsing Tables

- Build a pair of tables, Action and Goto, from the grammar
 - This is the hardest part, we omit here
 - Rows labeled by states
 - For Action, columns labeled by terminals and “end-of-tokens” marker
 - (more generally strings of terminals of fixed length)
 - For Goto, columns labeled by non-terminals
Action and Goto Tables

- Given a state and the next input, Action table says either
 - shift and go to state n, or
 - reduce by production k (explained in a bit)
 - accept or error

- Given a state and a non-terminal, Goto table says
 - go to state m
LR(i) Parsing Algorithm

- Based on push-down automata
- Uses states and transitions (as recorded in Action and Goto tables)
- Uses a stack containing states, terminals and non-terminals
LR(i) Parsing Algorithm

0. Insure token stream ends in special “end-of-tokens” symbol
1. Start in state 1 with an empty stack
2. Push $\text{state}(1)$ onto stack
3. Look at next i tokens from token stream ($toks$) (don’t remove yet)
4. If top symbol on stack is $\text{state}(n)$, look up action in Action table at $(n, toks)$
LR(i) Parsing Algorithm

5. If action = \textbf{shift} \ m,
 a) Remove the top token from token stream and push it onto the stack
 b) Push \textbf{state}(m) onto stack
 c) Go to step 3
LR(i) Parsing Algorithm

6. If action = \textbf{reduce} \(k \) where production \(k \) is \(E ::= u \)
 a) Remove \(2 \times \text{length}(u) \) symbols from stack (\(u \) and all the interleaved states)
 b) If new top symbol on stack is \texttt{state}(m), look up new state \(p \) in Goto(m,E)
 c) Push \(E \) onto the stack, then push \texttt{state}(p) onto the stack
 d) Go to step 3
LR(i) Parsing Algorithm

7. If action = **accept**
 - Stop parsing, return success

8. If action = **error**,
 - Stop parsing, return failure
Adding Synthesized Attributes

- Add to each **reduce** a rule for calculating the new synthesized attribute from the component attributes.
- Add to each non-terminal pushed onto the stack, the attribute calculated for it.
- When performing a **reduce**,
 - gather the recorded attributes from each non-terminal popped from stack
 - Compute new attribute for non-terminal pushed onto stack
Shift-Reduce Conflicts

- **Problem**: can’t decide whether the action for a state and input character should be **shift** or **reduce**
- Caused by ambiguity in grammar
- Usually caused by lack of associativity or precedence information in grammar
Example: \(<\text{Sum}\> = 0 \mid 1 \mid (<\text{Sum}\>)
\mid <\text{Sum}\> + <\text{Sum}\>

\[
\begin{array}{c}
0 + 1 + 0 \quad \text{shift} \\
\rightarrow 0 \dagger + 1 + 0 \quad \text{reduce} \\
\rightarrow <\text{Sum}\> \dagger + 1 + 0 \quad \text{shift} \\
\rightarrow <\text{Sum}\> + \dagger 1 + 0 \quad \text{shift} \\
\rightarrow <\text{Sum}\> + 1 \dagger + 0 \quad \text{reduce} \\
\rightarrow <\text{Sum}\> + <\text{Sum}\> \dagger + 0
\end{array}
\]
Example - cont

- **Problem:** shift or reduce?

- You can shift-shift-reduce-reduce or reduce-shift-shift-shift-reduce

- Shift first - right associative
- Reduce first- left associative
Reduce - Reduce Conflicts

- **Problem:** can’t decide between two different rules to reduce by
- Again caused by ambiguity in grammar
- **Symptom:** RHS of one production suffix of another
- Requires examining grammar and rewriting it
- Harder to solve than shift-reduce errors
Example

- $S ::= A \mid aB$, $A ::= abc$, $B ::= bc$

- abc shift
- a bc shift
- ab c shift
- abc

Problem: reduce by $B ::= bc$ then by $S ::= aB$, or by $A ::= abc$ then $S ::= A$?
Semantics

- Expresses the meaning of syntax
- Static semantics
 - Meaning based only on the form of the expression without executing it
 - Usually restricted to type checking / type inference
Dynamic semantics

- Method of describing meaning of executing a program
- Several different types:
 - Operational Semantics
 - Axiomatic Semantics
 - Denotational Semantics
Dynamic Semantics

- Different languages better suited to different types of semantics
- Different types of semantics serve different purposes
Operational Semantics

- Start with a simple notion of machine
- Describe how to execute (implement) programs of language on virtual machine, by describing how to execute each program statement (i.e., following the structure of the program)
- Meaning of program is how its execution changes the state of the machine
- Useful as basis for implementations
Axiomatic Semantics

- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from *axioms* and *inference rules*
- Mainly suited to simple imperative programming languages
Axiomatic Semantics

- Used to formally prove a property (post-condition) of the state (the values of the program variables) after the execution of program, assuming another property (pre-condition) of the state before execution
- Written:
 \{Precondition\} Program \{Postcondition\}
- Source of idea of *loop invariant*
Construct a function M assigning a mathematical meaning to each program construct.

Lambda calculus often used as the range of the meaning function.

Meaning function is compositional: meaning of construct built from meaning of parts.

Useful for proving properties of programs.
Natural Semantics

- Aka Structural Operational Semantics, aka “Big Step Semantics”
- Provide value for a program by rules and derivations, similar to type derivations
- Rule conclusions look like
 \[(C, m) \Downarrow m'\]
 or
 \[(E, m) \Downarrow v\]
Simple Imperative Programming Language

- \(I \in \text{Identifiers} \)
- \(N \in \text{Numerals} \)
- \(B ::= \text{true} \mid \text{false} \mid B \& B \mid B \text{ or } B \mid \text{not } B \mid E < E \mid E = E \)
- \(E ::= N \mid I \mid E + E \mid E \ast E \mid E - E \mid - E \)
- \(C ::= \text{skip} \mid C;C \mid I ::= E \mid \text{if } B \text{ then } C \text{ else } C \text{ fi} \mid \text{while } B \text{ do } C \text{ od} \)
Identifiers: \((I, m) \Downarrow m(I)\)

Numerals are values:
\((N, m) \Downarrow N\)

Booleans:
\((\text{true}, m) \Downarrow \text{true}\)
\((\text{false}, m) \Downarrow \text{false}\)
Booleans:

\[
\begin{align*}
(B, m) \downarrow & \text{ false } \quad (B, m) \downarrow \text{ true } \quad (B', m) \downarrow b \\
(B \& B', m) \downarrow & \text{ false } \quad (B \& B', m) \downarrow b \\
(B, m) \downarrow & \text{ true } \quad (B, m) \downarrow \text{ true } \quad (B', m) \downarrow b \\
(B \text{ or } B', m) \downarrow & \text{ true } \quad (B \text{ or } B', m) \downarrow b \\
(B, m) \downarrow & \text{ true } \quad (not \ B, m) \downarrow \text{ false } \\
(not \ B, m) \downarrow & \text{ false } \quad (not \ B, m) \downarrow \text{ true }
\end{align*}
\]
(E, m) \Downarrow U (E', m) \Downarrow V U \sim V = b

(E \sim E', m) \Downarrow b

- By $U \sim V = b$, we mean does (the meaning of) the relation \sim hold on the meaning of U and V
- May be specified by a mathematical expression/equation or rules matching U and V
Arithmetic Expressions

\[(E, m) \downarrow U \quad (E', m) \downarrow V \quad U \text{ op } V = N\]

\[(E \text{ op } E', m) \downarrow N\]

where \(N\) is the specified value for \(U \text{ op } V\)
Commands

Skip: (skip, \(m\)) \(\downarrow\) \(m\)

Assignment: \((E,m)\) \(\downarrow\) \(V\)
\((I::=E,m)\) \(\downarrow\) \(m[I <-- V]\)

Sequencing: \((C,m)\) \(\downarrow\) \(m'\) \((C',m')\) \(\downarrow\) \(m''\)
\((C;C',m)\) \(\downarrow\) \(m''\)
If Then Else Command

\[
(B,m) \downarrow \text{true} \quad (C,m) \downarrow m' \\
\frac{(\text{if } B \text{ then } C \text{ else } C' \text{ fi}, m)}{\downarrow m'}
\]

\[
(B,m) \downarrow \text{false} \quad (C',m) \downarrow m' \\
\frac{(\text{if } B \text{ then } C \text{ else } C' \text{ fi}, m)}{\downarrow m'}
\]
While Command

\[(B,m) \downarrow \text{false} \]

\[
\frac{\text{(while } B \text{ do } C \text{ od, } m) \downarrow m}{(C,m) \downarrow \text{true} \quad (B,m) \downarrow \text{true} \quad (B,m) \downarrow \text{false}}
\]

\[
\text{(while } B \text{ do } C \text{ od, } m') \downarrow m''
\]

\[
\text{(while } B \text{ do } C \text{ od, } m) \downarrow m'''
\]
Example: If Then Else Rule

(if \(x > 5 \) then \(y := 2 + 3 \) else \(y := 3 + 4 \) fi, \\
\{x -> 7\}) \downarrow ?
Example: If Then Else Rule

\[
(x > 5, \{x -> 7\}) \downarrow? \\
(if x > 5 then y := 2 + 3 else y := 3 + 4 fi, \{x -> 7\}) \downarrow?
\]
Example: Arith Relation

? > ? = ?

(x, {x -> 7}) \downarrow ?

(5, {x -> 7}) \downarrow ?

(x > 5, {x -> 7}) \downarrow ?

(if x > 5 then y := 2 + 3 else y := 3 + 4 fi,
{x -> 7}) \downarrow ?
Example: Identifier(s)

\[7 > 5 = \text{true} \]
\[
(x, \{x \rightarrow 7\}) \downarrow 7 \quad (5, \{x \rightarrow 7\}) \downarrow 5
\]
\[
(x > 5, \{x \rightarrow 7\}) \downarrow ?
\]
\[
(\text{if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi, } \{x \rightarrow 7\}) \downarrow ?
\]
Example: Arith Relation

\[7 > 5 = \text{true} \]

\[
(x, \{x \rightarrow 7\}) \downarrow 7 \quad (5, \{x \rightarrow 7\}) \downarrow 5
\]

\[
(x > 5, \{x \rightarrow 7\}) \downarrow \text{true}
\]

\[
(\text{if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi, } \{x \rightarrow 7\}) \downarrow ?
\]
Example: If Then Else Rule

\[
\begin{align*}
7 > 5 &= \text{true} \\
(x, \{x \rightarrow 7\}) \Downarrow & 7 & (5, \{x \rightarrow 7\}) \Downarrow & 5 \\
(x > 5, \{x \rightarrow 7\}) \Downarrow & \text{true} \\
(\text{if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi}, \{x \rightarrow 7\}) \Downarrow & ?
\end{align*}
\]
Example: Assignment

\[7 > 5 = \text{true} \]
\[(x, \{x \mapsto 7\}) \downarrow \ 7 \quad (5, \{x \mapsto 7\}) \downarrow \ 5 \]
\[(x > 5, \{x \mapsto 7\}) \downarrow \text{true} \]
\[\text{(if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi, } \]
\[\{x \mapsto 7\}) \downarrow ? \]

\[(2 + 3, \{x \mapsto 7\}) \downarrow ? \]
\[(y := 2 + 3, \{x \mapsto 7\}) \downarrow ? \]
Example: Arith Op

7 > 5 = true

(2, {x -> 7}) \downarrow ?

(3, {x -> 7}) \downarrow ?

7 > 5 = true

(2 + 3, {x -> 7}) \downarrow ?

(y := 2 + 3, {x -> 7})

(\text{if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi},
\{x -> 7\}) \downarrow ?
Example: Numerals

\[2 + 3 = 5 \]

\[(2, \{x -> 7\}) \downarrow 2 \quad (3, \{x -> 7\}) \downarrow 3 \]

\[7 > 5 = \text{true} \]

\[(x, \{x -> 7\}) \downarrow 7 \quad (5, \{x -> 7\}) \downarrow 5 \]

\[(x > 5, \{x -> 7\}) \downarrow \text{true} \]

\[\text{if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,} \]

\[\{x -> 7\}) \downarrow ? \]
Example: Arith Op

2 + 3 = 5
(2, {x->7}) \downarrow 2 (3, {x->7}) \downarrow 3
7 > 5 = true
(x, {x->7}) \downarrow 7 (5, {x->7}) \downarrow 5
(x > 5, {x -> 7}) \downarrow true
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,
{x -> 7}) \downarrow ?
Example: Assignment

\[
\begin{align*}
2 + 3 &= 5 \\
(2, \{x\rightarrow 7\}) &\Downarrow 2 \\
(3, \{x\rightarrow 7\}) &\Downarrow 3 \\
7 > 5 &= \text{true} \\
(2+3, \{x\rightarrow 7\}) &\Downarrow 5 \\
(y := 2 + 3, \{x\rightarrow 7\}) &\Downarrow \{x\rightarrow 7, y \rightarrow 5\} \\
(x > 5, \{x \rightarrow 7\}) &\Downarrow \text{true} \\
\text{(if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,} \\
\{x \rightarrow 7\}) &\Downarrow ?
\end{align*}
\]
Example: If Then Else Rule

\[2 + 3 = 5 \]
\[(2, \{ x \rightarrow 7 \}) \downarrow 2 \quad (3, \{ x \rightarrow 7 \}) \downarrow 3 \]

\[7 > 5 = \text{true} \]
\[(x, \{ x \rightarrow 7 \}) \downarrow 7 \quad (5, \{ x \rightarrow 7 \}) \downarrow 5 \]

\[(x > 5, \{ x \rightarrow 7 \}) \downarrow \text{true} \]

\[\text{if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi,} \]
\[\{ x \rightarrow 7 \} \]
Let in Command

\[(E, m) \Downarrow v \mathllap{\left(C, m[I \leftarrow v] \right)} \Downarrow m' \]
\[
(\text{let } I = E \text{ in } C, m) \Downarrow m''
\]

Where \(m''(y) = m'(y) \) for \(y \neq I \) and \(m''(I) = m(I) \) if \(m(I) \) is defined, and \(m''(I) \) is undefined otherwise.
Example

\[(x,\{x->5\}) \Downarrow 5 \quad (3,\{x->5\}) \Downarrow 3\]

\[(x+3,\{x->5\}) \Downarrow 8\]

\[(5,\{x->17\}) \Downarrow 5 \quad (x:=x+3,\{x->5\}) \Downarrow \{x->8\}\]

(let x = 5 in (x:=x+3), \{x -> 17\}) \Downarrow ?
Example

\[(x, \{x->5\}) \Downarrow 5\]
\[(3, \{x->5\}) \Downarrow 3\]
\[(x+3, \{x->5\}) \Downarrow 8\]
\[(5, \{x->17\}) \Downarrow 5\]
\[(x:=x+3, \{x->5\}) \Downarrow \{x->8\}\]
\[(\text{let } x = 5 \text{ in } (x:=x+3), \{x -> 17\}) \Downarrow \{x->17\}\]
Comment

- Simple Imperative Programming Language introduces variables *implicitly* through assignment
- The let-in command introduces scoped variables *explicitly*
- Clash of constructs apparent in awkward semantics
Interpretation Versus Compilation

- A **compiler** from language L1 to language L2 is a program that takes an L1 program and for each piece of code in L1 generates a piece of code in L2 of same meaning.

- An **interpreter** of L1 in L2 is an L2 program that executes the meaning of a given L1 program.

- Compiler would examine the body of a loop once; an interpreter would examine it every time the loop was executed.
An *Interpreter* represents the operational semantics of a language L1 (source language) in the language of implementation L2 (target language)

Built incrementally
- Start with literals
- Variables
- Primitive operations
- Evaluation of expressions
- Evaluation of commands/declarations
Interpreter

- Takes abstract syntax trees as input
 - In simple cases could be just strings
- One procedure for each syntactic category (nonterminal)
 - eg one for expressions, another for commands
- If Natural semantics used, tells how to compute final value from code
- If Transition semantics used, tells how to compute next “state”
 - To get final value, put in a loop
Natural Semantics Example

- compute_exp (Var(v), m) = look_up v m
- compute_exp (Int(n), _) = Num (n)
- ...
- compute_com(IfExp(b,c1,c2),m) =
 if compute_exp (b,m) = Bool(true)
 then compute_com (c1,m)
 else compute_com (c2,m)
Natural Semantics Example

- \(\text{compute_com}(\text{While}(b,c), m) = \)
 \[
 \text{if compute_exp (b,m) = Bool(false) then m} \]
 \[
 \text{else compute_com (While}(b,c), \text{compute_com}(c,m)) \]

- May fail to terminate - exceed stack limits
- Returns no useful information then