Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
General Input

```plaintext
{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
  regexp { action }
  | ...
  | ...
  | regexp { action }
and entrypoint [arg1... argn] = parse ...and ...
{ trailer }
```
Ocamllex Input

- header and trailer contain arbitrary ocaml code put at top an bottom of <filename>.ml

- let ident = regexp ... Introduces ident for use in later regular expressions
Ocamllex Input

- `<filename>.ml` contains one lexing function per `entrypoint`
 - Name of function is name given for `entrypoint`
 - Each entry point becomes an Ocaml function that takes \(n+1 \) arguments, the extra implicit last argument being of type `Lexing.lexbuf`

- `arg1... argn` are for use in `action`
Ocamllex Regular Expression

- Single quoted characters for letters: ‘a’
- _ : (underscore) matches any letter
- Eof: special “end_of_file” marker
- Concatenation same as usual
- “string”: concatenation of sequence of characters
- e_1 / e_2: choice - what was $e_1 \lor e_2$
Ocamllex Regular Expression

- \([c_1 - c_2]\): choice of any character between first and second inclusive, as determined by character codes
- \([^c_1 - c_2]\): choice of any character NOT in set
- \(e^*\): same as before
- \(e+\): same as \(e \ e^*\)
- \(e?\): option - was \(e_1 \vee \varepsilon\)
Ocamlllex Regular Expression

- $e_1 \# e_2$: the characters in e_1 but not in e_2; e_1 and e_2 must describe just sets of characters
- **ident**: abbreviation for earlier reg exp in
 let ident = regexp
- e_1 as **id**: binds the result of e_1 to id to be used in the associated action
More details can be found at

Example: test.mll

```ocaml
{ type result = Int of int | Float of float | String of string } 

let digit = ['0'..'9']
let digits = digit +

let lower_case = ['a'..'z']
let upper_case = ['A'..'Z']
let letter = upper_case | lower_case
let letters = letter +
```
Example: test.mll

```ml
rule main = parse
  (digits)'.'digits as f { Float (float_of_string f) }
| digits as n { Int (int_of_string n) }
| letters as s { String s}
| _ { main lexbuf }
{ let newlexbuf = (Lexing.from_channel stdin) in
  print_string "Ready to lex."
  print_newline ();
  main newlexbuf }
```
Example

```ocaml
# use "test.ml";;

...

val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->
    result = <fun>

Ready to lex.
hi there 234 5.2
- : result = String "hi"

What happened to the rest?!?!
Example

# let b = Lexing.from_channel stdin;;
# main b;;
hi 673 there
- : result = String "hi"
# main b;;
- : result = Int 673
# main b;;
- : result = String "there"
Your Turn

- Work on MP8
  - Add a few keywords
  - Implement booleans and unit
  - Implement Ints and Floats
  - Implement identifiers
Problem

- How to get lexer to look at more than the first token at one time?
- One Answer: *action* tells it to -- recursive calls
- Side Benefit: can add “state” into lexing
- Note: already used this with the _ case
Example

```plaintext
rule main = parse
 (digits) '.' digits as f { Float
 (float_of_string f) :: main lexbuf}
| digits as n { Int (int_of_string n) ::
 main lexbuf }
| letters as s { String s :: main lexbuf}
| eof { [] }
| _ { main lexbuf }
```
Example Results

Ready to lex.

hi there 234 5.2

- : result list = [String "hi"; String "there"; Int 234; Float 5.2]

#

Used Ctrl-d to send the end-of-file signal
First Attempt

let open_comment = "(*)(
let close_comment = ")"

rule main = parse
  (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf}
| digits as n { Int (int_of_string n) :: main lexbuf }
| letters as s { String s :: main lexbuf}
Dealing with comments

open_comment	{ comment lexbuf }
eof	{ [] }
_ { main lexbuf }	
_	

and comment = parse

  close_comment       | { main lexbuf } |
| _                    | { comment lexbuf } |
Dealing with nested comments

rule main = parse ...
  | open_comment        { comment 1 lexbuf }
  | eof                  { [] }
  | _ { main lexbuf }
and comment depth = parse
  open_comment        { comment (depth+1) lexbuf }
  close_comment       { if depth = 1
                         then main lexbuf
                         else comment (depth - 1) lexbuf }
  _                    { comment depth lexbuf }
Dealing with nested comments

rule main = parse
  (digits) '.' digits as f { Float (float_of_string f) ::
    main lexbuf}
| digits as n         { Int (int_of_string n) :: main lexbuf }
| letters as s        { String s :: main lexbuf }
| open_comment        { (comment 1 lexbuf}
| eof                  { [] } }
| _ { main lexbuf }
Dealing with nested comments

and comment depth = parse

  open_comment { comment (depth+1) lexbuf }
| close_comment { if depth = 1
              then main lexbuf
              else comment (depth - 1) lexbuf }
| _ { comment depth lexbuf }
Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata

- Whole family more of grammars and automata – covered in automata theory
Sample Grammar

- Language: Parenthesized sums of 0’s and 1’s

- `<Sum>` ::= 0
- `<Sum>` ::= 1
- `<Sum>` ::= `<Sum>` + `<Sum`
- `<Sum>` ::= ( `<Sum>` )
BNF Grammars

- Start with a set of characters, \( a, b, c, \ldots \)
  - We call these *terminals*
- Add a set of different characters, \( X, Y, Z, \ldots \)
  - We call these *nonterminals*
- One special nonterminal \( S \) called *start symbol*
BNF Grammars

- BNF rules (aka *productions*) have form
  \[ X ::= y \]
  where \( X \) is any nonterminal and \( y \) is a string of terminals and nonterminals

- BNF *grammar* is a set of BNF rules such that every nonterminal appears on the left of some rule
Sample Grammar

- Terminals: 0 1 + ( )
- Nonterminals: <Sum>
- Start symbol = <Sum>

- <Sum> ::= 0
- <Sum> ::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)
- Can be abbreviated as
  <Sum> ::= 0 | 1
  | <Sum> + <Sum> | (<Sum>)
Given rules

\[ X ::= yZw \text{ and } Z ::= v \]

we may replace \( Z \) by \( v \) to say

\[ X \Rightarrow yZw \Rightarrow yvw \]

Sequence of such replacements called \textit{derivation}.

Derivation called \textit{right-most} if always replace the right-most non-terminal.
BNF Derivations

- Start with the start symbol:

\(<\text{Sum}?> \Rightarrow\)
BNF Derivations

- Pick a non-terminal

<Sum> =>
BNF Derivations

- Pick a rule and substitute:
  - `<Sum>` ::= `<Sum>` + `<Sum>`

  `<Sum>` => `<Sum>` + `<Sum>`
BNF Derivations

- Pick a non-terminal:

\[ <\text{Sum}> \rightarrow <\text{Sum}> + <\text{Sum}> \]
BNF Derivations

- Pick a rule and substitute:
  - `<Sum> ::= ( <Sum> )`
  - `<Sum> => <Sum> + <Sum>`
  - `=> ( <Sum> ) + <Sum>`
BNF Derivations

- Pick a non-terminal:

\[<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}> \]

\[\Rightarrow ( <\text{Sum}> ) + <\text{Sum}> \]
BNF Derivations

- Pick a rule and substitute:
  - `<Sum> ::= <Sum> + <Sum>`
  - `<Sum> => <Sum> + <Sum>`
  - `=> ( <Sum> ) + <Sum>`
  - `=> ( <Sum> + <Sum> ) + <Sum>`
BNF Derivations

- Pick a non-terminal:

\[
<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}>
\]

\[
\Rightarrow ( <\text{Sum} > ) + <\text{Sum}>
\]

\[
\Rightarrow ( <\text{Sum} > + <\text{Sum} > ) + <\text{Sum}>
\]
BNF Derivations

- Pick a rule and substitute:
  - `<Sum> ::= 1`

`<Sum>` => `<Sum> + <Sum>`

=> `( <Sum> ) + <Sum>`

=> `( <Sum> + <Sum> ) + <Sum>`

=> `( <Sum> + 1 ) + <Sum>`
BNF Derivations

Pick a non-terminal:

\[ \text{<Sum>} \Rightarrow \text{<Sum>} + \text{<Sum>} \]
\[ \Rightarrow ( \text{<Sum>} ) + \text{<Sum>} \]
\[ \Rightarrow ( \text{<Sum>} + \text{<Sum>} ) + \text{<Sum>} \]
\[ \Rightarrow ( \text{<Sum>} + 1 ) + \text{<Sum>} \]
BNF Derivations

- Pick a rule and substitute:
  - `<Sum>` ::= 0

  `<Sum>` => `<Sum>` + `<Sum>`
  => ( `<Sum>` ) + `<Sum>`
  => ( `<Sum>` + `<Sum>` ) + `<Sum>`
  => ( `<Sum>` + 1 ) + `<Sum>`
  => ( `<Sum>` + 1 ) + 0
BNF Derivations

- Pick a non-terminal:

\[ <\text{Sum}> \rightarrow <\text{Sum}> + <\text{Sum}> \]
\[ \rightarrow ( <\text{Sum}> ) + <\text{Sum}> \]
\[ \rightarrow ( <\text{Sum}> + <\text{Sum}> ) + <\text{Sum}> \]
\[ \rightarrow ( <\text{Sum}> + 1 ) + <\text{Sum}> \]
\[ \rightarrow ( <\text{Sum}> + 1 ) + 0 \]
BNF Derivations

- Pick a rule and substitute
  - `<Sum> ::= 0`

`<Sum> => <Sum> + <Sum>`

=> `( <Sum> ) + <Sum>`

=> `( <Sum> + <Sum> ) + <Sum>`

=> `( <Sum> + 1 ) + <Sum>`

=> `( <Sum> + 1 ) 0`

=> `( 0 + 1 ) + 0`
BNF Derivations

- \(( 0 + 1 ) + 0\) is generated by grammar

\[
<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}>
\]
\[
\Rightarrow ( <\text{Sum}> ) + <\text{Sum}>
\]
\[
\Rightarrow ( <\text{Sum}> + <\text{Sum}> ) + <\text{Sum}>
\]
\[
\Rightarrow ( <\text{Sum}> + 1 ) + <\text{Sum}>
\]
\[
\Rightarrow ( <\text{Sum}> + 1 ) + 0
\]
\[
\Rightarrow ( 0 + 1 ) + 0
\]
<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> =>
The meaning of a BNF grammar is the set of all strings consisting only of terminals that can be derived from the Start symbol.
Regular Grammars

- Subclass of BNF
- Only rules of form
  - \(<\text{nonterminal}> ::= <\text{terminal}><\text{nonterminal}>\) or
  - \(<\text{nonterminal}> ::= <\text{terminal}>\) or
  - \(<\text{nonterminal}> ::= \varepsilon\)
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata – nonterminals \(\cong\) states; rule \(\cong\) edge
Example

- Regular grammar:
  
  `<Balanced> ::= ε`
  
  `<Balanced> ::= 0<OneAndMore>`
  
  `<Balanced> ::= 1<ZeroAndMore>`
  
  `<OneAndMore> ::= 1<Balanced>`
  
  `<ZeroAndMore> ::= 0<Balanced>`

- Generates even length strings where every initial substring of even length has same number of 0’s as 1’s
Extended BNF Grammars

- **Alternatives:** allow rules of from $X ::= y/z$
  - Abbreviates $X ::= y, X ::= z$

- **Options:** $X ::= y[v]z$
  - Abbreviates $X ::= yvz, X ::= yz$

- **Repetition:** $X ::= y\{v\}*z$
  - Can be eliminated by adding new nonterminal $V$ and rules $X ::= yz, X ::= yVz, V ::= v, V ::= WV$
Parse Trees

- Graphical representation of derivation
- Each node labeled with either non-terminal or terminal
- If node is labeled with a terminal, then it is a leaf (no sub-trees)
- If node is labeled with a non-terminal, then it has one branch for each character in the right-hand side of rule used to substitute for it
Example

- Consider grammar:

\[
\begin{align*}
<exp> & ::= <factor> \\
& \quad | \quad <factor> + <factor> \\
<factor> & ::= <bin> \\
& \quad | \quad <bin> \times <exp> \\
<bin> & ::= 0 \quad | \quad 1
\end{align*}
\]

- Problem: Build parse tree for \(1 \times 1 + 0\) as an \(<exp>\)
Example cont.

- $1 \times 1 + 0$: <exp>

<exp> is the start symbol for this parse tree
Example cont.

- $1 \times 1 + 0: \quad <\text{exp}>$
  
  \[
  \begin{array}{c}
  \text{Use rule:} \quad <\text{exp}> \ ::= \quad <\text{factor}>
  \end{array}
  \]
Example cont.

1 * 1 + 0: <exp>

Use rule: <factor> ::= <bin> * <exp>
Example cont.

1 * 1 + 0: <exp>

Use rules: \( <bin> ::= 1 \) and \\
\( <exp> ::= <factor> + <factor> \)
Example cont.

1 * 1 + 0:  

Use rule: <factor> ::= <bin>
Example cont.

$1 \times 1 + 0$:

```
<exp>
|
<factor>
|
<bin> <exp>
 | |
 1 * <bin>
 | |
 1 <factor> + <factor>
 | |
 <bin> <bin>
 | |
 1 0
```

Use rules: $<bin> ::= 1 \mid 0$
Example cont.

1 * 1 + 0:

```
<exp>
 <factor>
 <bin> * <exp>
 1 <factor> + <factor>
 <bin> <bin>
 1 0
```

Fringe of tree is string generated by grammar
Your Turn: $1 \times 0 + 0 \times 1$
Parse Tree Data Structures

- Parse trees may be represented by OCaml datatypes
- One datatype for each nonterminal
- One constructor for each rule
- Defined as mutually recursive collection of datatype declarations
Example

- Recall grammar:
  \[
  \begin{align*}
  \langle \text{exp} \rangle & \ ::= \langle \text{factor} \rangle \ | \ \langle \text{factor} \rangle + \langle \text{factor} \rangle \\
  \langle \text{factor} \rangle & \ ::= \langle \text{bin} \rangle \ | \ \langle \text{bin} \rangle * \langle \text{exp} \rangle \\
  \langle \text{bin} \rangle & \ ::= \ 0 \ | \ 1
  \end{align*}
  \]

- type exp = Factor2Exp of factor
  \[\quad | \text{Plus of factor} \ast \text{factor} \]
  and factor = Bin2Factor of bin
  \[\quad | \text{Mult of bin} \ast \text{exp} \]
  and bin = Zero | One
Example cont.

1 * 1 + 0:  
```
<exp>
|<factor>
|<bin> *<exp>
| 1 +<factor>
|<bin>
| 1 +<bin>
| 1 +0
```
Example cont.

- Can be represented as

  Factor2Exp
  (Mult(One,
       Plus(Bin2Factor One,
            Bin2Factor Zero))))
Ambiguous Grammars and Languages

- A BNF grammar is *ambiguous* if its language contains strings for which there is more than one parse tree.
- If all BNF’s for a language are ambiguous, then the language is *inherently ambiguous*.
Example: Ambiguous Grammar

\[
0 + 1 + 0
\]
Example

What is the result for:

$$3 + 4 \times 5 + 6$$
Example

What is the result for:

\[ 3 + 4 \times 5 + 6 \]

Possible answers:

- \[ 41 = ((3 + 4) \times 5) + 6 \]
- \[ 47 = 3 + (4 \times (5 + 6)) \]
- \[ 29 = (3 + (4 \times 5)) + 6 = 3 + ((4 \times 5) + 6) \]
- \[ 77 = (3 + 4) \times (5 + 6) \]
Example

What is the value of:

$7 - 5 - 2$
Example

- What is the value of:
  \[ 7 - 5 - 2 \]

- Possible answers:
  - In Pascal, C++, SML assoc. left
    \[ 7 - 5 - 2 = (7 - 5) - 2 = 0 \]
  - In APL, associate to right
    \[ 7 - 5 - 2 = 7 - (5 - 2) = 4 \]
Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator associativity

- Not the only sources of ambiguity