Background for Unification

- Terms made from constructors and variables (for the simple first order case)
- Constructors may be applied to arguments (other terms) to make new terms
- Variables and constructors with no arguments are base cases
- Constructors applied to different number of arguments (arity) considered different
- Substitution of terms for variables

Simple Implementation Background

```ocaml
type term = Variable of string
| Const of (string * term list)

let rec subst var_name residue term =
  match term with
  | Variable name ->
    if var_name = name then residue else term
  | Const (c, tys) ->
    Const (c, List.map (subst var_name residue) tys);;
```

Unification Problem

Given a set of pairs of terms ("equations")

\[
\{(s_1, t_1), (s_2, t_2), \ldots, (s_n, t_n)\}
\]

(the unification problem) does there exist a substitution \(\sigma\) (the unification solution) of terms for variables such that

\[
\sigma(s_i) = \sigma(t_i),
\]

for all \(i = 1, \ldots, n\)?

Uses for Unification

- Type Inference and type checking
- Pattern matching as in OCAML
- Can use a simplified version of algorithm
- Logic Programming - Prolog
- Simple parsing

Unification Algorithm

- Let \(S = \{(s_1= t_1), (s_2= t_2), \ldots, (s_n= t_n)\}\) be a unification problem.

 - Case \(S = \{\}\): \(\text{Unif}(S) = \text{Identity function (i.e., no substitution)}\)
 - Case \(S = \{(s, t)\} \cup S'\): Four main steps
Unification Algorithm

- **Delete:** if \(s = t \) (they are the same term) then \(\text{Unif}(S) = \text{Unif}(S') \)
- **Decompose:** if \(s = f(q_1, \ldots, q_m) \) and \(t = f(r_1, \ldots, r_m) \) (same \(f \), same \(m \!)), then \(\text{Unif}(S) = \text{Unif}({(q_1, r_1), \ldots, (q_m, r_m)} \cup S') \)
- **Orient:** if \(t = x \) is a variable, and \(s \) is not a variable, \(\text{Unif}(S) = \text{Unif} \{(x = s) \cup S'\} \)

Tricks for Efficient Unification

- Don’t return substitution, rather do it incrementally
- Make substitution be constant time
 - Requires implementation of terms to use mutable structures (or possibly lazy structures)
 - We won’t discuss these

Example

- \(x,y,z \) variables, \(f,g \) constructors
- \(S = \{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} \) is nonempty
 - \(\text{Unify} \{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ? \)

Example

- \(x,y,z \) variables, \(f,g \) constructors
- Pick a pair: \((g(y,y) = x) \)
 - \(\text{Unify} \{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ? \)
Example

- x,y,z variables, f,g constructors
- Pick a pair: $(g(y,y)) = x)$
- Orient: $(x = g(y,y))$
- Unify $\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} =$
 Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\}$
 by Orient

Example

- x,y,z variables, f,g constructors
- Pick a pair: $(g(y,y)) = x)$
- Orient: $(x = g(y,y))$
- Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\} =$
 Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\}$
 by Orient

Example

- x,y,z variables, f,g constructors
- Pick a pair: $(x = g(y,y))$
- Eliminate x with substitution $\{x \rightarrow g(y,y)\}$
 - Check: x not in $g(y,y)$
 - Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\}$

Example

- x,y,z variables, f,g constructors
- Pick a pair: $(x = g(y,y))$
- Eliminate x with substitution $\{x \rightarrow g(y,y)\}$
 - Unify $\{(f(x) = f(g(f(z),y))), (x = g(y,y))\}$
 - Unify $\{(f(g(y,y)) = f(g(f(z),y)))\}$
 - $\{x \rightarrow g(y,y)\}$
Example
- x,y,z variables, f,g constructors

Unify $\{(f(g(y),y)) = f(g(f(z),y))\}$
- $\{x \rightarrow g(y,y)\} = ?$

Example
- x,y,z variables, f,g constructors

Unify $\{(f(g(y),y)) = f(g(f(z),y))\}$
- $\{x \rightarrow g(y,y)\} = ?$

Example
- x,y,z variables, f,g constructors
- Pick a pair: $(f(g(y),y)) = f(g(f(z),y))$

Unify $\{(f(g(y),y)) = f(g(f(z),y))\}$
- $\{x \rightarrow g(y,y)\} = ?$

Example
- x,y,z variables, f,g constructors
- Pick a pair: $(f(g(y),y)) = f(g(f(z),y))$

Decompose: $(f(g(y),y)) = f(g(f(z),y))$
becomes $\{(g(y,y) = g(f(z),y))\}$

Unify $\{(f(g(y),y)) = f(g(f(z),y))\}$
- $\{x \rightarrow g(y,y)\} =$

Example
- x,y,z variables, f,g constructors
- Pick a pair: $(g(y,y)) = g(f(z),y))$

Unify $\{(g(y,y) = g(f(z),y))\}$
- $\{x \rightarrow g(y,y)\} = ?$
Example

- x, y, z variables, f, g constructors
- Pick a pair: $(f(g(y, y)) = f(g(f(z), y)))$
- Decompose: $(g(y, y)) = g(f(z), y))$ becomes
 $\{(y = f(z)); (y = y)\}$
- Unify $\{(g(y, y) = g(f(z), y))\} \circ \{x \rightarrow g(y, y)\} = \{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\}$

Example

- x, y, z variables, f, g constructors
- Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\} = \?$

Example

- x, y, z variables, f, g constructors
- $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\}$ is non-empty
- Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\} = \?$

Example

- x, y, z variables, f, g constructors
- Pick a pair: $(y = f(z))$
- Eliminate y with $\{y \rightarrow f(z)\}$
- Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\} = \?$
 - Unify $\{(f(z) = f(z))\}$
 - $\circ \{y \rightarrow f(z)\} \circ \{x \rightarrow g(y, y)\} = \?
 - Unify $\{(f(z) = f(z))\}$
 - $\circ \{y \rightarrow f(z)\} \circ \{x \rightarrow g(f(z), f(z))\} = \?$
Example

- **x,y,z variables, f,g constructors**
- **{{f(z) = f(z)}} is non-empty**
 - Unify **{{f(z) = f(z)}}**
 - o \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} = ?

Example

- **x,y,z variables, f,g constructors**
- Pick a pair: *(f(z) = f(z))*
 - Unify **{(f(z) = f(z))}**
 - o \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} = ?

Example

- **x,y,z variables, f,g constructors**
- Pick a pair: *(f(z) = f(z))*
 - Delete
 - Unify **{(f(z) = f(z))}**
 - o \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} =
 Unify {} o {y \rightarrow f(z); x \rightarrow g(f(z), f(z))}

Example

- **x,y,z variables, f,g constructors**
- \{} is empty
 - Unify {} = identity function
 - Unify {} o \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\} =
 Unify {} o \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}

Example

- **x,y,z variables, f,g constructors**
- Unify **{(f(x) = f(g(f(z), y))), (g(y, y) = x)}** =
 \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}

\[
\begin{align*}
 f(x) &= f(g(f(z), y)) \\
 g(y, y) &= x \\
 &\rightarrow g(f(z), f(z)) = g(f(z), f(z))
\end{align*}
\]
Example of Failure: Decompose

- Unify\{\{f(x,g(y)) = f(h(y),x)\}\}
- Decompose: \((f(x,g(y)) = f(h(y),x))\)
- = Unify \{\{x = h(y)\}, \{g(y) = x\}\}
- Orient: \{(g(y) = x)\}
- = Unify \{\{x = h(y)\}, \{x = g(y)\}\}
- Eliminate: \{(x = h(y))\}
- Unify \{(h(y), g(y))\} o \{(x \rightarrow h(y))\}
- No rule to apply! Decompose fails!

Example of Failure: Occurs Check

- Unify\{\{f(x,g(x)) = f(h(x),x)\}\}
- Decompose: \((f(x,g(x)) = f(h(x),x))\)
- = Unify \{\{x = h(x)\}, \{g(x) = x\}\}
- Orient: \{(g(y) = x)\}
- = Unify \{\{x = h(x)\}, \{x = g(x)\}\}
- No rules apply.

Major Phases of a Compiler

- Source Program
- Lex
- Tokens
- Parse
- Abstract Syntax
- Semantic Analysis
- Symbol Table
- Translate
- Intermediate Representation
- Optimize
- Optimized IR
- Instruction Selection
- Unoptimized Machine-Specific Assembly Language
- Optimize
- Optimized Machine-Specific Assembly Language
- Emit code
- Assembly Language
- Assembler
- Relocatable Object Code
- Linker
- Machine Code

Meta-discourse

- Language Syntax and Semantics
- Syntax
 - Regular Expressions, DFSAs and NDFSAs
 - Grammars
- Semantics
 - Natural Semantics
 - Transition Semantics

Language Syntax

- Syntax is the description of which strings of symbols are meaningful expressions in a language
- It takes more than syntax to understand a language; need meaning (semantics) too
- Syntax is the entry point

Syntax of English Language

- Pattern 1
 - Subject | Verb
 - David | sings
 - The dog | barked
 - Susan | yearned

- Pattern 2
 - Subject | Verb | Direct Object
 - David | sings | ballads
 - The professor | wants to retire
 - The jury | found | the defendant guilty
Elements of Syntax

- Character set – previously always ASCII, now often 64 character sets
- Keywords – usually reserved
- Special constants – cannot be assigned to
- Identifiers – can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)

Expressions

- if ... then begin ... ; ... end else begin ... ; ... end

Type expressions

- typexpr₁ -> typexpr₂

Declarations (in functional languages)

- let pattern₁ = expr₁ in expr

Statements (in imperative languages)

- a = b + c

Subprograms

- let pattern₁ = let rec inner = … in expr

Modules

- Interfaces
- Classes (for object-oriented languages)

Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
 - **Lexing**: Converting string (or streams of characters) into lists (or streams) of tokens (the “words” of the language)
 - Specification Technique: Regular Expressions
 - **Parsing**: Convert a list of tokens into an abstract syntax tree
 - Specification Technique: BNF Grammars

Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata
- Context-free grammars, BNF grammars, syntax diagrams
- Whole family more of grammars and automata – covered in automata theory

Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs