Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
Why Data Types?

Data types play a key role in:

- *Data abstraction* in the design of programs
- *Type checking* in the analysis of programs
- *Compile-time code generation* in the translation and execution of programs
- Data layout (how many words; which are data and which are pointers) dictated by type
Terminology

- Type: A **type** \(t \) defines a set of possible data values
 - E.g. **short** in C is \(\{ x | 2^{15} - 1 \geq x \geq -2^{15} \} \)
 - A value in this set is said to have type \(t \)

- Type system: rules of a language assigning types to expressions
Types as Specifications

- Types describe properties
- Different type systems describe different properties, eg
 - Data is read-write versus read-only
 - Operation has authority to access data
 - Data came from “right” source
 - Operation might or could not raise an exception
- Common type systems focus on types describing same data layout and access methods
Sound Type System

- If an expression is assigned type t, and it evaluates to a value v, then v is in the set of values defined by t

- SML, OCAML, Scheme and Ada have sound type systems

- Most implementations of C and C++ do not
Strongly Typed Language

- When no application of an operator to arguments can lead to a run-time type error, language is *strongly typed*
 - Eg: 1 + 2.3;;
- Depends on definition of “type error”
Strongly Typed Language

- C++ claimed to be “strongly typed”, but
 - Union types allow creating a value at one type and using it at another
 - Type coercions may cause unexpected (undesirable) effects
 - No array bounds check (in fact, no runtime checks at all)
- SML, OCAML “strongly typed” but still must do dynamic array bounds checks, runtime type case analysis, and other checks
Static vs Dynamic Types

- **Static type**: type assigned to an expression at compile time
- **Dynamic type**: type assigned to a storage location at run time
- **Statically typed language**: static type assigned to every expression at compile time
- **Dynamically typed language**: type of an expression determined at run time
Type Checking

- When is $\text{op}(\text{arg1},...,\text{argn})$ allowed?
- *Type checking* assures that operations are applied to the right number of arguments of the right types
 - Right type may mean same type as was specified, or may mean that there is a predefined implicit coercion that will be applied
- Used to resolve overloaded operations
Type Checking

- Type checking may be done *statically* at compile time or *dynamically* at run time.
- Dynamically typed (aka untyped) languages (eg LISP, Prolog) do only dynamic type checking.
- Statically typed languages can do most type checking statically.
Dynamic Type Checking

- Performed at run-time before each operation is applied
- Types of variables and operations left unspecified until run-time
 - Same variable may be used at different types
Dynamic Type Checking

- Data object must contain type information

- Errors aren’t detected until violating application is executed (maybe years after the code was written)
Static Type Checking

- Performed after parsing, before code generation
- Type of every variable and signature of every operator must be known at compile time
Static Type Checking

- Can eliminate need to store type information in data object if no dynamic type checking is needed
- Catches many programming errors at earliest point
- Can’t check types that depend on dynamically computed values
 - Eg: array bounds
Static Type Checking

- Typically places restrictions on languages
 - Garbage collection
 - References instead of pointers
 - All variables initialized when created
 - Variable only used at one type
 - Union types allow for work-arounds, but effectively introduce dynamic type checks
Type Declarations

Type declarations: explicit assignment of types to variables (signatures to functions) in the code of a program

- Must be checked in a strongly typed language
- Often not necessary for strong typing or even static typing (depends on the type system)
Type Inference

- **Type inference**: A program analysis to assign a type to an expression from the program context of the expression
 - Fully static type inference first introduced by Robin Miller in ML
 - Haskle, OCAML, SML all use type inference
 - Records are a problem for type inference
Format of Type Judgments

- A *type judgement* has the form
 \[\Gamma |- \text{exp} : \tau \]

- \(\Gamma \) is a typing environment
 - Supplies the types of variables and functions
 - \(\Gamma \) is a set of the form \(\{ x : \sigma, \ldots \} \)
 - For any \(x \) at most one \(\sigma \) such that \((x : \sigma \in \Gamma)\)

- \(\text{exp} \) is a program expression

- \(\tau \) is a type to be assigned to \(\text{exp} \)

- \(-\) pronounced “turnstyle”, or “entails” (or “satisfies” or, informally, “shows”)

Axioms - Constants

\[\Gamma \vdash n : \text{int} \quad (\text{assuming } n \text{ is an integer constant}) \]

\[\Gamma \vdash \text{true} : \text{bool} \quad \Gamma \vdash \text{false} : \text{bool} \]

- These rules are true with any typing environment
- \(\Gamma, n \) are meta-variables
Axioms – Variables (Monomorphic Rule)

Notation: Let $\Gamma(x) = \sigma$ if $x : \sigma \in \Gamma$

Note: if such σ exits, its unique

Variable axiom:

$$\Gamma \vdash x : \sigma \quad \text{if} \quad \Gamma(x) = \sigma$$
Simple Rules - Arithmetic

Primitive operators ($\oplus \in \{+,-,\ast,\ldots\}$):

\[
\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2 \quad (\oplus) : \tau_1 \rightarrow \tau_2 \rightarrow \tau_3 \\
\hline
\Gamma \vdash e_1 \oplus e_2 : \tau_3
\]

Relations ($\sim \in \{<,>,=,\leq,\geq\}$):

\[
\Gamma \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau \\
\hline
\Gamma \vdash e_1 \sim e_2 : \text{bool}
\]

For the moment, think τ is int
Example: \{x:\text{int}\} |- x + 2 = 3 : \text{bool}

What do we need to show first?

\{x:\text{int}\} |- x + 2 = 3 : \text{bool}
Example: \(\{x:\text{int}\} \vdash x + 2 = 3 : \text{bool}\)

What do we need for the left side?

\[
\begin{align*}
\{x : \text{int}\} & \vdash x + 2 : \text{int} \quad \{x:\text{int}\} \vdash 3 : \text{int} \\
\hline
\{x:\text{int}\} & \vdash x + 2 = 3 : \text{bool}
\end{align*}
\]
Example: \{x: \text{int}\} |- x + 2 = 3 : \text{bool}

How to finish?

\[
\frac{
\frac{
\frac{\{x: \text{int}\} |- x: \text{int}}{\{x: \text{int}\} |- 2: \text{int}}}{\{x: \text{int}\} |- x + 2: \text{int}}}{\{x: \text{int}\} |- 3: \text{int}}
\]

\[
\frac{\{x: \text{int}\} |- 3: \text{int}}{\{x: \text{int}\} |- x + 2 = 3: \text{bool}}
\]
Example: \{x: \text{int}\} \vdash x + 2 = 3 : \text{bool}

Complete Proof (type derivation)

\[
\begin{array}{c}
\text{Var} & \quad \text{Const} \\
\{x: \text{int}\} \vdash x: \text{int} & \quad \{x: \text{int}\} \vdash 2: \text{int} \\
\hline
\{x: \text{int}\} \vdash x + 2 : \text{int} & \quad \text{AO} \\
\hline
\{x: \text{int}\} \vdash 3 : \text{int} & \quad \text{Rel} \\
\hline
\{x: \text{int}\} \vdash x + 2 = 3 : \text{bool}
\end{array}
\]
Simple Rules - Booleans

Connectives

\[
\begin{align*}
\Gamma |- e_1 : \text{bool} & \quad \Gamma |- e_2 : \text{bool} \\
\Gamma |- e_1 & \quad \Gamma |- e_2 : \text{bool} \\
\Gamma |- e_1 & \quad \Gamma |- e_2 : \text{bool} \\
\Gamma |- e_1 \land e_2 : \text{bool} \\
\Gamma |- e_1 \lor e_2 : \text{bool}
\end{align*}
\]
Type Variables in Rules

- If_then_else rule:

\[
\begin{align*}
\Gamma & |- e_1 : \text{bool} \\
\Gamma & |- e_2 : \tau \\
\Gamma & |- e_3 : \tau \\
\Gamma & |- (\text{if } e_1 \text{ then } e_2 \text{ else } e_3) : \tau
\end{align*}
\]

- \(\tau \) is a type variable (meta-variable)
- Can take any type at all
- All instances in a rule application must get same type
- Then branch, else branch and if_then_else must all have same type
Function Application

- Application rule:

\[\Gamma |- e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma |- e_2 : \tau_1 \]

\[\Gamma |- (e_1 e_2) : \tau_2 \]

- If you have a function expression \(e_1 \) of type \(\tau_1 \rightarrow \tau_2 \) applied to an argument \(e_2 \) of type \(\tau_1 \), the resulting expression \(e_1 e_2 \) has type \(\tau_2 \)
Fun Rule

- Rules describe types, but also how the environment Γ may change
- Can only do what rule allows!
- fun rule:

\[
\{ x : \tau_1 \} + \Gamma \vdash e : \tau_2 \\
\Gamma \vdash \text{fun } x \rightarrow e : \tau_1 \rightarrow \tau_2
\]
Fun Examples

\[
\{y : \text{int}\} + \Gamma |- y + 3 : \text{int} \\
\Gamma |- \text{fun } y \rightarrow y + 3 : \text{int} \rightarrow \text{int}
\]

\[
\{f : \text{int} \rightarrow \text{bool}\} + \Gamma |- f\ 2 :: [\text{true}] : \text{bool list} \\
\Gamma |- (\text{fun } f \rightarrow f\ 2 :: [\text{true}]) \\
: (\text{int} \rightarrow \text{bool}) \rightarrow \text{bool list}
\]
(Monomorphic) Let and Let Rec

- let rule:

\[
\begin{align*}
\Gamma |- e_1 : \tau_1 & \quad \{x : \tau_1\} + \Gamma |- e_2 : \tau_2 \\
\Gamma |- (\text{let } x = e_1 \text{ in } e_2) : \tau_2
\end{align*}
\]

- let rec rule:

\[
\begin{align*}
\{x : \tau_1\} + \Gamma |- e_1 : \tau_1 & \quad \{x : \tau_1\} + \Gamma |- e_2 : \tau_2 \\
\Gamma |- (\text{let rec } x = e_1 \text{ in } e_2) : \tau_2
\end{align*}
\]
Example

Which rule do we apply?

?- (let rec one = 1 :: one in
 let x = 2 in
 fun y -> (x :: y :: one)) : int → int list
Example

Let rec rule: ② \{one : int list\} |-
① (let x = 2 in
\{one : int list\} |- fun y -> (x :: y :: one))
(1 :: one) : int list : int → int list

|- (let rec one = 1 :: one in
let x = 2 in
 fun y -> (x :: y :: one)) : int → int list
Proof of 1

Which rule?

\{\text{one} : \text{int list}\} \vdash (1 :: \text{one}) : \text{int list}
Proof of 1

- Application

3. \{one : int list\} |- ((::) 1): int list → int list

4. \{one : int list\} |- one : int list

\hline
\{one : int list\} |- (1 :: one) : int list
Proof of 3

Constants Rule

\[
\begin{align*}
\{\text{one : int list}\} & \vdash (\cdot\cdot) : \text{int} \rightarrow \text{int list} \rightarrow \text{int list} \\
\{\text{one : int list}\} & \vdash 1 : \text{int} \\
\{\text{one : int list}\} & \vdash ((\cdot\cdot) 1) : \text{int list} \rightarrow \text{int list}
\end{align*}
\]
Proof of 4

- Rule for variables

\{\text{one : int list}\} \ |- \ \text{one:int list}
Proof of 2

Constant

\[\begin{align*}
\text{(5)} & \quad \{x: \text{int}; \text{one} : \text{int list}\} |- \\
& \quad \text{fun } y \rightarrow \\
& \quad (x :: y :: \text{one}) \\
\{\text{one} : \text{int list}\} |- 2 : \text{int} & \quad : \text{int } \rightarrow \text{int list} \\
\{\text{one} : \text{int list}\} |- (\text{let } x = 2 \text{ in } \\
& \quad \text{fun } y \rightarrow (x :: y :: \text{one})) : \text{int } \rightarrow \text{int list}
\end{align*} \]
Proof of 5

\[
\begin{align*}
\{x : \text{int}; \text{one} : \text{int list}\} & \vdash \text{fun } y \rightarrow (x :: y :: \text{one}) \\
\text{: int } & \rightarrow \text{ int list}
\end{align*}
\]
Proof of 5

\[\{y: \text{int}; \ x: \text{int}; \ \text{one} : \text{int list}\} \vdash (x :: y :: \text{one}) : \text{int list}\]

\[\{x: \text{int}; \ \text{one} : \text{int list}\} \vdash \text{fun y -> (x :: y :: one)}\)

: \text{int} \rightarrow \text{int list}\]
Proof of 5

6

{y:int; x:int; one:int list} {y:int; x:int; one:int list}
|- ((::) x):int list → int list |- (y :: one) : int list

{y:int; x:int; one : int list} |- (x :: y :: one) : int list

{x:int; one : int list} |- fun y -> (x :: y :: one))

: int → int list
Proof of 6

Constant: \{...\} \vdash (\::\::\)\n
Variable: \vdash x: int\n
: int \rightarrow\rightarrow int list \vdash (\cdot\cdot\cdot) x\n
: int list \rightarrow\rightarrow int list
Proof of 7

Pf of 6 \([y/x]\)

\[
\begin{align*}
\{y:\text{int}; \ldots\} & \vdash ((::) y) \\
\{\ldots; \text{one: int list}\} & \vdash \text{one: int list} \\
\text{int list} \to \text{int list} & \vdash (y :: \text{one}) : \text{int list}
\end{align*}
\]
Curry - Howard Isomorphism

- Type Systems are logics; logics are type systems
- Types are propositions; propositions are types
- Terms are proofs; proofs are terms
- Function space arrow corresponds to implication; application corresponds to modus ponens
Curry - Howard Isomorphism

- Modus Ponens

\[
A \Rightarrow B \quad A
\]

\[
\quad \quad \quad \quad B
\]

- Application

\[
\Gamma |- e_1 : \alpha \rightarrow \beta \quad \Gamma |- e_2 : \alpha
\]

\[
\Gamma |- (e_1 \; e_2) : \beta
\]
The above system can’t handle polymorphism as in OCAML.

No type variables in type language (only meta-variable in the logic)

Would need:

- Object level type variables and some kind of type quantification
- `let` and `let rec` rules to introduce polymorphism
- Explicit rule to eliminate (instantiate) polymorphism