Why Data Types?

Data types play a key role in:
- Data abstraction in the design of programs
- Type checking in the analysis of programs
- Compile-time code generation in the translation and execution of programs
- Data layout (how many words; which are data and which are pointers) dictated by type

Terminology

Type: A type t defines a set of possible data values
- E.g. short in C is $\{x| 2^{15} - 1 \geq x \geq -2^{15}\}$
- A value in this set is said to have type t

Type system: rules of a language assigning types to expressions

Sound Type System

If an expression is assigned type t, and it evaluates to a value v, then v is in the set of values defined by t
- SML, OCAML, Scheme and Ada have sound type systems
- Most implementations of C and C++ do not

Strongly Typed Language

When no application of an operator to arguments can lead to a run-time type error, language is strongly typed
- E.g: $1 + 2.3;$
- Depends on definition of “type error”
Strongly Typed Language
- C++ claimed to be “strongly typed”, but
- Union types allow creating a value at one type and using it at another
- Type coercions may cause unexpected (undesirable) effects
- No array bounds check (in fact, no runtime checks at all)
- SML, OCAML “strongly typed” but still must do dynamic array bounds checks, runtime type case analysis, and other checks

Static vs Dynamic Types
- **Static type**: type assigned to an expression at compile time
- **Dynamic type**: type assigned to a storage location at run time
- **Statically typed language**: static type assigned to every expression at compile time
- **Dynamically typed language**: type of an expression determined at run time

Type Checking
- When is op(arg1,…,argn) allowed?
- **Type checking** assures that operations are applied to the right number of arguments of the right types
 - Right type may mean same type as was specified, or may mean that there is a predefined implicit coercion that will be applied
 - Used to resolve overloaded operations

Dynamic Type Checking
- Performed at run-time before each operation is applied
- Types of variables and operations left unspecified until run-time
 - Same variable may be used at different types

Type Checking
- Type checking may be done **statically** at compile time or **dynamically** at run time
- Dynamically typed (aka untyped) languages (eg LISP, Prolog) do only dynamic type checking
- Statically typed languages can do most type checking statically

Dynamic Type Checking
- Data object must contain type information
- Errors aren’t detected until violating application is executed (maybe years after the code was written)
Static Type Checking

- Performed after parsing, before code generation
- Type of every variable and signature of every operator must be known at compile time

Can eliminate need to store type information in data object if no dynamic type checking is needed
- Catches many programming errors at earliest point
- Can’t check types that depend on dynamically computed values
 - Eg: array bounds

Typically places restrictions on languages
- Garbage collection
- References instead of pointers
- All variables initialized when created
- Variable only used at one type
 - Union types allow for work-arounds, but effectively introduce dynamic type checks

Type declarations: explicit assignment of types to variables (signatures to functions) in the code of a program
- Must be checked in a strongly typed language
- Often not necessary for strong typing or even static typing (depends on the type system)

Type inference: A program analysis to assign a type to an expression from the program context of the expression
- Fully static type inference first introduced by Robin Miller in ML
- Haskle, OCAML, SML all use type inference
 - Records are a problem for type inference

A type judgement has the form
\[\Gamma \vdash \text{exp} : \tau \]
- \(\Gamma\) is a typing environment
- Supplies the types of variables and functions
- \(\Gamma\) is a set of the form \(\{ x : \sigma \ldots \}\)
- For any \(x\) at most one \(\sigma\) such that \((x : \sigma \in \Gamma)\)
- \(\text{exp}\) is a program expression
- \(\vdash\) is a type to be assigned to \(\text{exp}\)
- \(\vdash\) pronounced “turnstile”, or “entails” (or “satisfies” or, informally, “shows”)

Format of Type Judgments
Axioms - Constants

\(\Gamma |- n : \text{int} \) (assuming \(n \) is an integer constant)

\(\Gamma |- \text{true} : \text{bool} \)
\(\Gamma |- \text{false} : \text{bool} \)

- These rules are true with any typing environment
- \(\Gamma, n \) are meta-variables

Axioms – Variables (Monomorphic Rule)

Notation: Let \(\Gamma(x) = \sigma \) if \(x : \sigma \in \Gamma \)

Note: if such \(\sigma \) exits, its unique

Variable axiom:

\(\Gamma |- x : \sigma \) if \(\Gamma(x) = \sigma \)

Simple Rules - Arithmetic

Primitive operators (\(\oplus \in \{ +, -, *, ..., \} \)):

\(\Gamma |- e_1 : \tau_1 \quad \Gamma |- e_2 : \tau_2 \quad (\oplus) : \tau_1 \rightarrow \tau_2 \rightarrow \tau_3 \)

\(\Gamma |- e_1 \oplus e_2 : \tau_3 \)

Relations (\(\sim \in \{ <, >, =, <=, >= \} \)):

\(\Gamma |- e_1 : \tau \quad \Gamma |- e_2 : \tau \)

\(\Gamma |- e_1 \sim e_2 : \text{bool} \)

For the moment, think \(\tau \) is \(\text{int} \)

Example: \(\{x : \text{int}\} |- x + 2 = 3 : \text{bool} \)

What do we need to show first?

\(\{x : \text{int}\} |- x : \text{int} \quad \{x : \text{int}\} |- 2 : \text{int} \)

\(\{x : \text{int}\} |- x + 2 : \text{int} \quad \{x : \text{int}\} |- 3 : \text{int} \)

\(\{x : \text{int}\} |- x + 2 = 3 : \text{bool} \)

Example: \(\{x : \text{int}\} |- x + 2 = 3 : \text{bool} \)

How to finish?

\(\{x : \text{int}\} |- x : \text{int} \quad \{x : \text{int}\} |- 2 : \text{int} \quad \{x : \text{int}\} |- 3 : \text{int} \)

\(\{x : \text{int}\} |- x + 2 : \text{int} \quad \{x : \text{int}\} |- x + 2 = 3 : \text{bool} \)
Example: \(\{ x : \text{int} \} \vdash x + 2 = 3 : \text{bool} \)

Complete Proof (type derivation)

\[
\begin{array}{ccc}
\text{Var} & \text{Const} \\
\{ x : \text{int} \} \vdash x : \text{int} & \{ x : \text{int} \} \vdash 2 : \text{int} & \text{AO} \\
\{ x : \text{int} \} \vdash x + 2 : \text{int} \end{array}
\]

\[\text{Rel} \]

\[
\{ x : \text{int} \} \vdash x + 2 = 3 : \text{bool}
\]

Simple Rules - Booleans

Connectives

\[
\begin{array}{c}
\Gamma \vdash e_1 : \text{bool} \\
\Gamma \vdash e_2 : \text{bool}
\end{array}
\]

\[
\Gamma \vdash e_1 \&\& e_2 : \text{bool}
\]

Type Variables in Rules

- **If**_then_else rule:
 \[
 \Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau \\
 \Gamma \vdash (\text{if} \ e_1 \ \text{then} \ e_2 \ \text{else} \ e_3) : \tau
 \]

- \(\tau \) is a type variable (meta-variable)
- Can take any type at all
- All instances in a rule application must get same type
- Then branch, else branch and if_then_else must all have same type

Function Application

- **Application rule:**
 \[
 \Gamma \vdash e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash e_2 : \tau_1 \\
 \Gamma \vdash (e_1 \ e_2) : \tau_2
 \]

- If you have a function expression \(e_1 \) of type \(\tau_1 \rightarrow \tau_2 \) applied to an argument \(e_2 \) of type \(\tau_1 \), the resulting expression \(e_1 \ e_2 \) has type \(\tau_2 \)

Fun Rule

- Rules describe types, but also how the environment \(\Gamma \) may change
- Can only do what rule allows!
- **fun rule:**
 \[
 \{ x : \tau_1 \} + \Gamma \vdash e : \tau_2 \\
 \Gamma \vdash \text{fun} \ x \rightarrow e : \tau_1 \rightarrow \tau_2
 \]

Fun Examples

\[
\{ y : \text{int} \} + \Gamma \vdash y + 3 : \text{int} \\
\Gamma \vdash \text{fun} \ y \rightarrow y + 3 : \text{int} \rightarrow \text{int}
\]

\[
\{ f : \text{int} \rightarrow \text{bool} \} + \Gamma \vdash f \ 2 :: [\text{true}] : \text{bool list} \\
\Gamma \vdash (\text{fun} \ f \rightarrow f \ 2 :: [\text{true}]) : (\text{int} \rightarrow \text{bool}) \rightarrow \text{bool list}
\]
(Monomorphic) Let and Let Rec

- Let rule:
 \[\Gamma |- e_1 : \tau_1 \quad \{ x : \tau_1 \} + \Gamma |- e_2 : \tau_2 \]
 \[\Gamma |- (\text{let } x = e_1 \text{ in } e_2) : \tau_2 \]

- Let rec rule:
 \[\{ x : \tau_1 \} + \Gamma |- e_1 : \tau_1 \quad \{ x : \tau_1 \} + \Gamma |- e_2 : \tau_2 \]
 \[\Gamma |- (\text{let rec } x = e_1 \text{ in } e_2) : \tau_2 \]

Example

- Which rule do we apply?

 \[\Gamma |- (\text{let rec } one = 1 :: one \text{ in} \]
 let x = 2 in
 fun y -> (x :: y :: one)) : int \rightarrow int list

Proof of 1

- Which rule?

 \[\{ one : \text{int list} \} |- (1 :: one) : \text{int list} \]

Proof of 3

- Application

 \[\{ one : \text{int list} \} |- \quad \{ one : \text{int list} \} |- \]
 \[(((::) 1): \text{int list} \rightarrow \text{int list} \quad \text{one} : \text{int list} \]
 \[\{ one : \text{int list} \} |- (1 :: one) : \text{int list} \]
Proof of 4

- Rule for variables

\{one : int list\} |- one : int list

Proof of 2

5 \{x:int; one : int list\} |-

- Constant
 - fun y -> (x :: y :: one))

\{one : int list\} |- 2:int : int → int list

\{one : int list\} |- (let x = 2 in
 fun y -> (x :: y :: one)) : int → int list

Proof of 5

\{y:int; x:int; one : int list\} |- (x :: y :: one) : int list

\{x:int; one : int list\} |- fun y -> (x :: y :: one)) : int → int list

Proof of 6

Constant Variable

\{...\} |- (::)

: int→ int list→ int list \{...; x:int;...\} |- x:int

\{y:int; x:int; one : int list\} |- ((::) x) : int list

\{y:int; x:int; one : int list\} |- (y :: one) : int list

\{y:int; x:int; one : int list\} |- (x :: y :: one) : int list

\{x:int; one : int list\} |- fun y -> (x :: y :: one)) : int → int list

Proof of 5

\{y:int; x:int; one : int list\} |- (x :: y :: one) : int list

\{x:int; one : int list\} |- fun y -> (x :: y :: one)) : int → int list

Proof of 5

\{x:int; one : int list\} |-

- Constant
 - fun y -> (x :: y :: one))

\{one : int list\} |- 2:int : int → int list

\{one : int list\} |- (let x = 2 in
 fun y -> (x :: y :: one)) : int → int list
Proof of 7

Pf of 6 \([y/x]\) Variable

\[
\begin{align*}
\{y: \text{int}; \ ...\} & \vdash ((::) \ y) \\
\{\ ...; \text{one: int list}\} & \vdash \\
\text{int list} & \rightarrow \text{int list} \\
\{y: \text{int}; x: \text{int}; \text{one: int list}\} & \vdash (y :: \text{one}) : \text{int list}
\end{align*}
\]

Curry - Howard Isomorphism

- Type Systems are logics; logics are type systems
- Types are propositions; propositions are types
- Terms are proofs; proofs are terms
- Function space arrow corresponds to implication; application corresponds to modus ponens

Curry - Howard Isomorphism

- Modus Ponens

\[
A \Rightarrow B \quad A \\
\quad B
\]

- Application

\[
\Gamma \vdash e_1 : \alpha \rightarrow \beta \quad \Gamma \vdash e_2 : \alpha \\
\Gamma \vdash (e_1 e_2) : \beta
\]

Mia Copa

- The above system can’t handle polymorphism as in OCAML
- No type variables in type language (only meta-variable in the logic)
- Would need:
 - Object level type variables and some kind of type quantification
 - \texttt{let} and \texttt{let rec} rules to introduce polymorphism
 - Explicit rule to eliminate (instantiate) polymorphism