
9/11/14 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

Evaluating declarations

n  Evaluation uses an environment ρ
n  To evaluate a (simple) declaration let x = e

n  Evaluate expression e in ρ to value v
n  Then update ρ with x v: {x → v} + ρ

9/11/14 2

Evaluating expressions

n  Evaluation uses an environment ρ
n  A constant evaluates to itself
n  To evaluate an variable, look it up in ρ (ρ(v))
n  To evaluate uses of +, _ , etc, eval args,

then do operation
n  Function expression evaluates to its closure
n  To evaluate a local dec: let x = e1 in e2

n  Eval e1 to v, then eval e2 using {x → v} + ρ

9/11/14 3 9/11/14 4

Eval of App with Closures in OCaml

1.  Evaluate the right term to values, (v1,…,vn)

2.  In environment ρ, evaluate left term to
closure, c = <(x1,…,xn) → b, ρ>

3.  Match (x1,…,xn) variables in (first) argument
with values (v1,…,vn)

4.  Update the environment ρ to
ρ’ = {x1 → v1,…, xn →vn}+ ρ

5.  Evaluate body b in environment ρ’

OCaml Example 1

(print_string "a";
 (fun x -> (print_string "b";
 (fun y -> (print_string "c";
 x + y)))))
 (print_string "d"; 3)
 (print_string "e"; 5);;

9/11/14 5

OCaml Example 1

(print_string "a";
 (fun x -> (print_string "b";
 (fun y -> (print_string "c";
 x + y)))))
 (print_string "d"; 3)
 (print_string "e"; 5);;

edabc- : int = 8

9/11/14 6

Your turn now

Try Problem 1 on HW3

9/11/14 7

let f = (print_string "a";
 (fun x -> (print_string "b";
 (fun y -> (print_string "c";
 x + y))))) in
let u = (print_string "d"; 3) in
let g = f u in
let v = (print_string "e"; 5) in g v;;

9/11/14 8

let f = (print_string "a";
 (fun x -> (print_string "b";
 (fun y -> (print_string "c";
 x + y))))) in
let u = (print_string "d"; 3) in
let g = f u in
let v = (print_string "e"; 5) in g v;;
adbec- : int = 8

9/11/14 9 9/11/14 10

Higher Order Functions

n  A function is higher-order if it takes a
function as an argument or returns one as
a result

n  Example:
let compose f g = fun x -> f (g x);;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c ->

'b = <fun>
n  The type ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b

is a higher order type because of
('a -> 'b) and ('c -> 'a) and -> 'c -> 'b

9/11/14 11

Thrice

n  Recall:
let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
n  How do you write thrice with compose?

9/11/14 12

Thrice

n  Recall:
let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
n  How do you write thrice with compose?
let thrice f = compose f (compose f f);;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
n  Is this the only way?

9/11/14 13

Partial Application

(+);;
- : int -> int -> int = <fun>
(+) 2 3;;
- : int = 5
let plus_two = (+) 2;;
val plus_two : int -> int = <fun>
plus_two 7;;
- : int = 9
n  Patial application also called sectioning

9/11/14 14

Lambda Lifting

n  You must remember the rules for evaluation
when you use partial application

let add_two = (+) (print_string "test\n"; 2);;
test
val add_two : int -> int = <fun>
let add2 = (* lambda lifted *)
 fun x -> (+) (print_string "test\n"; 2) x;;
val add2 : int -> int = <fun>

9/11/14 15

Lambda Lifting

thrice add_two 5;;
- : int = 11
thrice add2 5;;
test
test
test
- : int = 11
n  Lambda lifting delayed the evaluation of the

argument to (+) until the second argument
was supplied

9/11/14 16

Partial Application and “Unknown Types”

n  Recall compose plus_two:
let f1 = compose plus_two;;
val f1 : ('_a -> int) -> '_a -> int = <fun>
n  Compare to lambda lifted version:
let f2 = fun g -> compose plus_two g;;
val f2 : ('a -> int) -> 'a -> int = <fun>
n  What is the difference?

9/11/14 17

Partial Application and “Unknown Types”

n  ‘_a can only be instantiated once for an expression
f1 plus_two;;
- : int -> int = <fun>
f1 List.length;;
Characters 3-14:
 f1 List.length;;
 ^^^^^^^^^^^
This expression has type 'a list -> int but is here used

with type int -> int

9/11/14 18

Partial Application and “Unknown Types”

n  ‘a can be repeatedly instantiated

f2 plus_two;;
- : int -> int = <fun>
f2 List.length;;
- : '_a list -> int = <fun>

Your turn now

Try Problem 2 on HW3

9/11/14 19 9/11/14 20

Lists

n  First example of a recursive datatype (aka
algebraic datatype)

n  Unlike tuples, lists are homogeneous in
type (all elements same type)

9/11/14 21

Lists

n  List can take one of two forms:
n  Empty list, written []

n  Non-empty list, written x :: xs

n  x is head element, xs is tail list, :: called
“cons”

n  Syntactic sugar: [x] == x :: []

n  [x1; x2; …; xn] == x1 :: x2 :: … :: xn :: []

9/11/14 22

Lists

let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
(8::5::3::2::1::1::[]) = fib5;;
- : bool = true
fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1;

1]

9/11/14 23

Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
 let bad_list = [1; 3.2; 7];;
 ^^^
This expression has type float but is here

used with type int

9/11/14 24

Question

n  Which one of these lists is invalid?

1.  [2; 3; 4; 6]
2.  [2,3; 4,5; 6,7]
3.  [(2.3,4); (3.2,5); (6,7.2)]
4.  [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

9/11/14 25

Answer

n  Which one of these lists is invalid?

1.  [2; 3; 4; 6]
2.  [2,3; 4,5; 6,7]
3.  [(2.3,4); (3.2,5); (6,7.2)]
4.  [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

§  3 is invalid because of last pair

9/11/14 26

Functions Over Lists

let rec double_up list =
 match list
 with [] -> [] (* pattern before ->,
 expression after *)
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1;

1; 1; 1]

9/11/14 27

Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

Question: Length of list

n  Problem: write code for the length of the list
n  How to start?

let rec length l =

9/11/14 28

Question: Length of list

n  Problem: write code for the length of the list
n  How to start?

let rec length l =
 match l with

9/11/14 29

Question: Length of list

n  Problem: write code for the length of the list
n  What patterns should we match against?

let rec length l =
 match l with

9/11/14 30

Question: Length of list

n  Problem: write code for the length of the list
n  What patterns should we match against?

let rec length l =
 match l with [] ->
 | (a :: bs) ->

9/11/14 31

Question: Length of list

n  Problem: write code for the length of the list
n  What result do we give when l is empty?

let rec length l =
 match l with [] ->
 | (a :: bs) ->

9/11/14 32

Question: Length of list

n  Problem: write code for the length of the list
n  What result do we give when l is empty?

let rec length l =
 match l with [] -> 0
 | (a :: bs) ->

9/11/14 33

Question: Length of list

n  Problem: write code for the length of the list
n  What result do we give when l is not empty?

let rec length l =
 match l with [] -> 0
 | (a :: bs) ->

9/11/14 34

Question: Length of list

n  Problem: write code for the length of the list
n  What result do we give when l is not empty?

let rec length l =
 match l with [] -> 0
 | (a :: bs) -> 1 + length bs

9/11/14 35

Your turn now

Try Problem 1 on MP3

9/11/14 36

Same Length

n  How can we efficiently answer if two lists
have the same length?

9/11/14 37

Same Length

n  How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
 match list1 with [] ->
 (match list2 with [] -> true
 | (y::ys) -> false)
 | (x::xs) ->
 (match list2 with [] -> false
 | (y::ys) -> same_length xs ys)
 9/11/14 38

9/11/14 39

Structural Recursion

n  Functions on recursive datatypes (eg lists)
tend to be recursive

n  Recursion over recursive datatypes generally
by structural recursion
n  Recursive calls made to components of structure

of the same recursive type
n  Base cases of recursive types stop the recursion

of the function

9/11/14 40

Structural Recursion : List Example

let rec length list = match list
 with [] -> 0 (* Nil case *)
 | x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4
n  Nil case [] is base case
n  Cons case recurses on component list xs

9/11/14 41

Forward Recursion

n  In Structural Recursion, split input into
components and (eventually) recurse

n  Forward Recursion form of Structural
Recursion

n  In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

n  Wait until whole structure has been
traversed to start building answer

9/11/14 42

Forward Recursion: Examples

let rec double_up list =
 match list
 with [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/11/14 43

Forward Recursion: Example

let rec map f list =
 match list
 with [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

Question

n  How do you write length with forward
recursion?

let rec length l =

9/11/14 44

Question

n  How do you write length with forward
recursion?

let rec length l =
 match l with [] ->
 | (a :: bs) ->

9/11/14 45

Question

n  How do you write length with forward
recursion?

let rec length l =
 match l with [] ->
 | (a :: bs) -> 1 + length bs

9/11/14 46

Question

n  How do you write length with forward
recursion?

let rec length l =
 match l with [] -> 0
 | (a :: bs) -> 1 + length bs

9/11/14 47

Your turn now

Try Problem 8 on MP3

9/11/14 48

9/11/14 49

Normal
call

h

g

f

…

An Important Optimization

n  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

n  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

9/11/14 50

Tail
call

h

f

…

An Important Optimization

n  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

n  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

n  Then h can return directly to f
instead of g

9/11/14 51

Tail Recursion

n  A recursive program is tail recursive if all
recursive calls are tail calls

n  Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

n  Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
n  May require an auxiliary function

9/11/14 52

Example of Tail Recursion

let rec prod l =
 match l with [] -> 1
 | (x :: rem) -> x * prod rem;;
val prod : int list -> int = <fun>
let prod list =
 let rec prod_aux l acc =
 match l with [] -> acc
 | (y :: rest) -> prod_aux rest (acc * y)
(* Uses associativity of multiplication *)
 in prod_aux list 1;;
 val prod : int list -> int = <fun>

Question

n  How do you write length with tail recursion?
let length l =

9/11/14 53

Question

n  How do you write length with tail recursion?
let length l =
 let rec length_aux list n =

in

9/11/14 54

Question

n  How do you write length with tail recursion?
let length l =
 let rec length_aux list n =
 match list with [] ->
 | (a :: bs) ->
in

9/11/14 55

Question

n  How do you write length with tail recursion?
let length l =
 let rec length_aux list n =
 match list with [] -> n
 | (a :: bs) ->
in

9/11/14 56

Question

n  How do you write length with tail recursion?
let length l =
 let rec length_aux list n =
 match list with [] -> n
 | (a :: bs) -> length_aux
in

9/11/14 57

Question

n  How do you write length with tail recursion?
let length l =
 let rec length_aux list n =
 match list with [] -> n
 | (a :: bs) -> length_aux bs
in

9/11/14 58

Question

n  How do you write length with tail recursion?
let length l =
 let rec length_aux list n =
 match list with [] -> n
 | (a :: bs) -> length_aux bs (n + 1)
in

9/11/14 59

Question

n  How do you write length with tail recursion?
let length l =
 let rec length_aux list n =
 match list with [] -> n
 | (a :: bs) -> length_aux bs (n + 1)
in length_aux l 0

9/11/14 60

Your turn now

Try Problem 10 on MP3

9/11/14 61 9/11/14 62

Mapping Functions Over Lists

let rec map f list =
 match list
 with [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

9/11/14 63

Mapping Recursion

n  One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
 with [] -> []
 | x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

9/11/14 64

Mapping Recursion

n  Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
 List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

n  Same function, but no rec

9/11/14 65

Folding Recursion

n  Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
 with [] -> 1
 | x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48
n  Computes (2 * (4 * (6 * 1)))

9/11/14 66

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with
 [] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let rec prodlist list = match list with
 [] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
- : int = 24

9/11/14 67

Iterating over lists

let rec fold_right f list b =
 match list
 with [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right
 (fun s -> fun () -> print_string s)
 ["hi"; "there"]
 ();;
therehi- : unit = ()

9/11/14 68

Folding Recursion

n  multList folds to the right
n  Same as:
let multList list =
 List.fold_right
 (fun x -> fun p -> x * p)
 list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48

9/11/14 69

Encoding Recursion with Fold

let rec append list1 list2 = match list1 with
 [] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

 Base Case Operation Recursive Call

let append list1 list2 =
 fold_right (fun x y -> x :: y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
 - : int list = [1; 2; 3; 4; 5; 6]

Question

let rec length l =
 match l with [] -> 0
 | (a :: bs) -> 1 + length bs
n  How do you write length with fold_right, but

no explicit recursion?

9/11/14 70

Question

let rec length l =
 match l with [] -> 0
 | (a :: bs) -> 1 + length bs
n  How do you write length with fold_right, but

no explicit recursion?
let length list =
 List.fold_right (fun x -> fun n -> n + 1) list 0

9/11/14 71 9/11/14 72

Map from Fold

let map f list =
 fold_right (fun x -> fun y -> f x :: y) list

[];;
val map : ('a -> 'b) -> 'a list -> 'b list =

<fun>
map ((+)1) [1;2;3];;
- : int list = [2; 3; 4]
n  Can you write fold_right (or fold_left) with

just map? How, or why not?

9/11/14 73

Iterating over lists

let rec fold_left f a list =
 match list
 with [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left
 (fun () -> print_string)
 ()
 ["hi"; "there"];;
hithere- : unit = ()

9/11/14 74

Encoding Tail Recursion with fold_left

let prod list = let rec prod_aux l acc =
 match l with [] -> acc
 | (y :: rest) -> prod_aux rest (acc * y)
 in prod_aux list 1;;
val prod : int list -> int = <fun>

 Init Acc Value Recursive Call Operation

let prod list =
 List.fold_left (fun acc y -> acc * y) 1 list;;
val prod: int list -> int = <fun>
prod [4;5;6];;
 - : int =120

Question

let length l =
 let rec length_aux list n =
 match list with [] -> n
 | (a :: bs) -> length_aux bs (n + 1)
in length_aux l 0
n  How do you write length with fold_left, but

no explicit recursion?

9/11/14 75

Question

let length l =
 let rec length_aux list n =
 match list with [] -> n
 | (a :: bs) -> length_aux bs (n + 1)
in length_aux l 0
n  How do you write length with fold_left, but

no explicit recursion?
let length list =
 List.fold_left (fun n -> fun x -> n + 1) 0 list
 9/11/14 76

9/11/14 77

Folding

let rec fold_left f a list = match list
 with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
 with [] -> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

9/11/14 78

Recall

let rec poor_rev list = match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

n  What is its running time?

9/11/14 79

Quadratic Time

n  Each step of the recursion takes time
proportional to input

n  Each step of the recursion makes only one
recursive call.

n  List example:

let rec poor_rev list = match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/11/14 80

Tail Recursion - Example

let rec rev_aux list revlist =
 match list with [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

n  What is its running time?

9/11/14 81

Comparison

n  poor_rev [1,2,3] =
n  (poor_rev [2,3]) @ [1] =
n  ((poor_rev [3]) @ [2]) @ [1] =
n  (((poor_rev []) @ [3]) @ [2]) @ [1] =
n  (([] @ [3]) @ [2]) @ [1]) =
n  ([3] @ [2]) @ [1] =
n  (3:: ([] @ [2])) @ [1] =
n  [3,2] @ [1] =
n  3 :: ([2] @ [1]) =
n  3 :: (2:: ([] @ [1])) = [3, 2, 1]

9/11/14 82

Comparison

n  rev [1,2,3] =
n  rev_aux [1,2,3] [] =
n  rev_aux [2,3] [1] =
n  rev_aux [3] [2,1] =
n  rev_aux [] [3,2,1] = [3,2,1]

9/11/14 83

Folding - Tail Recursion

-  # let rev list =
-  fold_left
-  (fun l -> fun x -> x :: l) //comb op
 [] //accumulator cell
 list

9/11/14 84

Folding

n  Can replace recursion by fold_right in any
forward primitive recursive definition
n  Primitive recursive means it only recurses on

immediate subcomponents of recursive data
structure

n  Can replace recursion by fold_left in any tail
primitive recursive definition

