Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
Consider this code:

```occam
let x = 27;;
let f x =
    let x = 5 in
    (fun x -> print_int x) 10;;

f 12;;
```

What value is printed?

5
10
12
27
Recall: \(\text{let plus}_x = \text{fun } x => y + x \)

\[
\begin{align*}
\text{let } x &= 12 \\
\text{let plus}_x &= \text{fun } y => y + x \\
\text{let } x &= 7
\end{align*}
\]
Closure for plus_x

- When plus_x was defined, had environment:
 \[\rho_{\text{plus}_x} = \{..., x \to 12, ...\} \]

- Recall: let plus_x y = y + x
 is really let plus_x = fun y -> y + x

- Closure for fun y -> y + x:
 \[<y \to y + x, \rho_{\text{plus}_x} > \]

- Environment just after plus_x defined:
 \[\{\text{plus}_x \to <y \to y + x, \rho_{\text{plus}_x} >\} + \rho_{\text{plus}_x} \]
Functions on tuples

```ocaml
# let plus_pair (n,m) = n + m;;
val plus_pair : int * int -> int = <fun>
# plus_pair (3,4);;
- : int = 7
# let double x = (x,x);;
val double : 'a -> 'a * 'a = <fun>
# double 3;;
- : int * int = (3, 3)
# double "hi";;
- : string * string = ("hi", "hi")
```
Your turn now

Try Problem 1 on MP2
Save the Environment!

- A *closure* is a pair of an environment and an association of a sequence of variables (the input variables) with an expression (the function body), written:

 \(< (v_1, \ldots, v_n) \rightarrow \text{exp}, \rho >\)

- Where \(\rho\) is the environment in effect when the function is defined (for a simple function)
Closure for plus_pair

- Assume $\rho_{\text{plus_pair}}$ was the environment just before plus_pair defined
- Closure for fun (n,m) -> n + m:
 $$<(n,m) \to n + m, \rho_{\text{plus_pair}}>$$
- Environment just after plus_pair defined:
 $$\{\text{plus_pair} \to <(n,m) \to n + m, \rho_{\text{plus_pair}}>\}$$
 $$+ \rho_{\text{plus_pair}}$$
Your turn now

Try (* 1 *) from HW2
Functions with more than one argument

```
# let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
# let t = add_three 6 3 2;;
val t : int = 11
# let add_three =
    fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>
```

Again, first syntactic sugar for second
Your turn now

Try Problem 2 on MP2
Curried vs Uncurried

- Recall

  ```
  val add_three : int -> int -> int -> int = <fun>
  ```

- How does it differ from

  ```
  # let add_triple (u,v,w) = u + v + w;;
  val add_triple : int * int * int -> int = <fun>
  ```

- add_three is **curried**;
- add_triple is **uncurried**
Curried vs Uncurried

```ocaml
# add_triple (6,3,2);;
- : int = 11
# add_triple 5 4;;
```

Characters 0-10:
```
  add_triple 5 4;;
  ^^^^^^^^^^^^^^^
```

This function is applied to too many arguments, maybe you forgot a `;`

```ocaml
# fun x -> add_triple (5,4,x);;
: int -> int = <fun>
```
Partial application of functions

```ocaml
let add_three x y z = x + y + z;;

# let h = add_three 5 4;;
val h : int -> int = <fun>

# h 3;;
- : int = 12

# h 7;;
- : int = 16
```
Your turn now

Try \((* 2 *)\) from HW2

Caution!

Know what the argument is and what the body is
Functions as arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

let g = thrice plus_two;;
val g : int -> int = <fun>

g 4;;
- : int = 10

thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"
Your turn now

Try Problem 3 on MP2
Evaluating declarations

- Evaluation uses an environment ρ
- To evaluate a (simple) declaration $\text{let } x = e$
 - Evaluate expression e in ρ to value v
 - Update ρ with $x \rightarrow v$: $\{x \rightarrow v\} + \rho$

- Update: $\rho_1 + \rho_2$ has all the bindings in ρ_1 and all those in ρ_2 that are not rebound in ρ_1

$\{x \rightarrow 2, y \rightarrow 3, a \rightarrow "\text{hi}"\} + \{y \rightarrow 100, b \rightarrow 6\}$

$= \{x \rightarrow 2, y \rightarrow 3, a \rightarrow "\text{hi}", b \rightarrow 6\}$
Evaluating expressions

- Evaluation uses an environment ρ
- A constant evaluates to itself
- To evaluate an variable, look it up in $\rho (\rho(v))$
- To evaluate uses of +, _, etc, eval args, then do operation
- Function expression evaluates to its closure
- To evaluate a local dec: let $x = e_1$ in e_2
 - Eval e_1 to v, eval e_2 using $\{x \rightarrow v\} + \rho$
Evaluation of Application with Closures

- In environment ρ, evaluate left term to closure, $c = \langle(x_1,\ldots,x_n) \rightarrow b, \rho \rangle$
- (x_1,\ldots,x_n) variables in (first) argument
- Evaluate the right term to values, (v_1,\ldots,v_n)
- Update the environment ρ to $\rho' = \{x_1 \rightarrow v_1,\ldots, x_n \rightarrow v_n\} + \rho$
- Evaluate body b in environment ρ'
Evaluation of Application of plus_x;;

- Have environment:
 \[\rho = \{ \text{plus}_x \rightarrow <y \rightarrow y + x, \rho_{\text{plus}_x} >, \ldots , y \rightarrow 3, \ldots \} \]
 where \(\rho_{\text{plus}_x} = \{ x \rightarrow 12, \ldots \} \)

- \(\text{Eval} \left(\text{plus}_x \ y, \ \rho \right) \) rewrites to

- \(\text{App} \left(<y \rightarrow y + x, \ \rho_{\text{plus}_x} >, \ 3 \right) \) rewrites to

- \(\text{Eval} \left(y + x, \ \{ y \rightarrow 3 \} + \rho_{\text{plus}_x} \right) \) rewrites to

- \(\text{Eval} \left(3 + 12 \ , \ \rho_{\text{plus}_x} \right) = 15 \)
Evaluation of Application of plus_pair

- Assume environment

\[\rho = \{ x \rightarrow 3..., \quad \text{plus_pair} \rightarrow \langle (n,m) \rightarrow n + m, \rho_{\text{plus_pair}} \rangle \} + \rho_{\text{plus_pair}} \]

- Eval (\text{plus_pair} (4,x), \rho) =

- \text{App} (\langle (n,m) \rightarrow n + m, \rho_{\text{plus_pair}} \rangle , (4,3)) =

- Eval (n + m, \{n \rightarrow 4, m \rightarrow 3\} + \rho_{\text{plus_pair}}) =

- Eval (4 + 3, \{n \rightarrow 4, m \rightarrow 3\} + \rho_{\text{plus_pair}}) = 7
Your turn now

Try (* 3 *) from HW2
If we start in an empty environment, and we execute:

```ml
let f = fun n -> n + 5;;
(* 0 *)
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
let a = f (4,6);;
```

What is the environment at (* 0 *)?
Answer

\[\text{let } f = \text{fun } n \rightarrow n + 5; \]

\[\rho_0 = \{f \rightarrow \langle n \rightarrow n + 5, \{\}\rangle\} \]
Closure question

- If we start in an empty environment, and we execute:

  ```ml
  let f = fun => n + 5;;
  let pair_map g (n,m) = (g n, g m);;
  ```

 (* 1 *)

  ```ml
  let f = pair_map f;;
  let a = f (4,6);;
  ```

 What is the environment at (* 1 *?)
Answer

\[\rho_0 = \{ f \to <n \to n + 5, \{ \} > \} \]

let pair_map g (n,m) = (g n, g m);;

\[\rho_1 = \{ \text{pair_map} \to \]
\[<g \to \text{fun} (n,m) \to (g n, g m),\]
\[\{ f \to <n \to n + 5, \{ \} > \} > ,\]
\[f \to <n \to n + 5, \{ \} > \} \]
Closure question

If we start in an empty environment, and we execute:

```ml
let f = fun => n + 5;;
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;

(* 2 *)
let a = f (4,6);;
```

What is the environment at (* 2 *)?
Evaluate pair_map f

\[\rho_0 = \{f \rightarrow \langle n \rightarrow n + 5, \{ \}\rangle\} \]

\[\rho_1 = \{\text{pair_map} \rightarrow \langle g \rightarrow \text{fun}\ (n,m) \rightarrow (g\ n, g\ m), \ \rho_0\rangle, \]

\[f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle\} \]

let f = pair_map f;;
Evaluate \(\text{pair_map } f \)

\[
\rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \} > \} \\
\rho_1 = \{ \text{pair_map } \rightarrow <g \rightarrow \text{fun } (n,m) \rightarrow (g \ n, g \ m), \rho_0 >, \text{f} \rightarrow <n \rightarrow n + 5, \{ \} > \} \\
\text{Eval(pair_map } f, \rho_1) =
\]
Evaluate \texttt{pair_map f}

\[
\rho_0 = \{ f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \}
\]

\[
\rho_1 = \{ \texttt{pair_map} \rightarrow \langle g \rightarrow \text{fun (n,m) -> (g n, g m), } \rho_0 \rangle ,
\quad f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \}
\]

\[
\text{Eval(\texttt{pair_map f}, \rho_1)} =
\]

\[
\text{Eval(app (\langle g \rightarrow \text{fun (n,m) -> (g n, g m), } \rho_0 \rangle ,
\quad \langle n \rightarrow n + 5, \{ \} \rangle), \rho_1) =}
\]
Evaluate `pair_map f`

\[\rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \} > \}\]

\[\rho_1 = \{ \text{pair_map} \rightarrow <g \rightarrow \text{fun} \ (n,m) \rightarrow (g
\ n, g \ m), \rho_0 >, \]

\[f \rightarrow <n \rightarrow n + 5, \{ \} > \}\]

Eval(`pair_map f`, \(\rho_1\)) =

Eval(`app (<g \rightarrow \text{fun} \ (n,m) \rightarrow (g \ n, g \ m), \rho_0 >, \]

\[<n \rightarrow n + 5, \{ \} > \), \rho_1\) =

Eval(`fun (n,m)->(g n, g m), \{g \rightarrow <n \rightarrow n + 5, \{ \} > \} + \rho_0\) =

\[<(n,m) \rightarrow (g \ n, g \ m), \{g \rightarrow <n \rightarrow n + 5, \{ \} > \} + \rho_0 >\]

\[=<(n,m) \rightarrow (g \ n, g \ m), \{g \rightarrow <n \rightarrow n + 5, \{ \} > \>

\[f \rightarrow <n \rightarrow n + 5, \{ \} > \} \)
\(\rho_1 = \{ \text{pair_map} \rightarrow \langle g \rightarrow \text{fun} (n,m) \rightarrow (g\ n, \ g\ m),\{f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \rangle, \\
\text{f} \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \rangle \} \\
\text{let f = pair_map f;}\;
\rho_2 = \{ \text{f} \rightarrow \langle (n,m) \rightarrow (g\ n, \ g\ m), \\
\{g \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle, \\
\text{f} \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \rangle, \\
\text{pair_map} \rightarrow \langle g \rightarrow \text{fun} (n,m) \rightarrow (g\ n, \ g\ m), \\
\{f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \rangle \} \} \} \)
Closure question

If we start in an empty environment, and we execute:

```ml
let f = fun => n + 5;;
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
let a = f (4,6);;
(* 3 *)
```

What is the environment at (* 3 *)?
Final Evaluation?

$$\rho_2 = \{ f \rightarrow <(n,m) \rightarrow (g\ n, \ g\ m), \ \\
\{ g \rightarrow <n \rightarrow n + 5, \{ \}\> >, \\
f \rightarrow <n \rightarrow n + 5, \{ \} > > \}, \\
\text{pair}_\text{map} \rightarrow <g \rightarrow \text{fun} (n,m) \rightarrow (g\ n, \ g\ m), \\
\{ f \rightarrow <n \rightarrow n + 5, \{ \} > > \} > > \}$$

let a = f (4,6);;;
Evaluate \(f(4,6) \);

\[\rho_2 = \{ f \rightarrow (n,m) \rightarrow (g\ n, g\ m), \\
\{ g \rightarrow n \rightarrow n + 5, \{ \} \}, \\
f \rightarrow n \rightarrow n + 5, \{ \} \} >, \\
pair_map \rightarrow <g \rightarrow \text{fun}\ (n,m) -> (g\ n, g\ m), \\
\{ f \rightarrow n \rightarrow n + 5, \{ \} \}> > \}

\[\text{Eval}(f(4,6), \rho_2) = \]
Evaluate $f(4,6)$;

\[\rho_2 = \{ f \rightarrow <(n,m) \rightarrow (g \ n, \ g \ m), \\
\{ g \rightarrow <n \rightarrow n + 5, \{ \} > >, \\
\{ f \rightarrow <n \rightarrow n + 5, \{ \} > > >, \\
\text{pair_map} \rightarrow <g \rightarrow \text{fun} \ (n,m) \rightarrow (g \ n, \ g \ m), \\
\{ f \rightarrow <n \rightarrow n + 5, \{ \} > > > > \} \} \}
\]

\[
\text{Eval}(f\ (4,6), \ \rho_2) = \\
\text{Eval(app}(<(n,m) \rightarrow (g \ n, \ g \ m), \\
\{ g \rightarrow <n \rightarrow n + 5, \{ \} > >, \\
\{ f \rightarrow <n \rightarrow n + 5, \{ \} > > > > , (4,6)), \ \rho_2) =
\]
Evaluate \(f(4,6) \);;

\[
\begin{align*}
\text{Eval}(\text{app}(\langle n, m \rangle \rightarrow (g \ n, g \ m), \\
\quad \{g \rightarrow \langle n \rightarrow n + 5, \{ \}\rangle, \\
\quad f \rightarrow \langle n \rightarrow n + 5, \{ \}\rangle\rangle, \langle 4, 6 \rangle), \rho_2) &= \\
\text{Eval}(\langle g \ n, g \ m \rangle, \{n \rightarrow 4, m \rightarrow 6\} + \\
\quad \{g \rightarrow \langle n \rightarrow n + 5, \{ \}\rangle, \\
\quad f \rightarrow \langle n \rightarrow n + 5, \{ \}\rangle\rangle) &= \\
\text{Eval}(\langle \text{app}(\langle n \rightarrow n + 5, \{ \}\rangle, 4), \\
\quad \text{app}(\langle n \rightarrow n + 5, \{ \}\rangle, 6)\rangle, \{n \rightarrow 4, m \rightarrow 6, g \rightarrow \langle n \rightarrow n + 5, \{ \}\rangle, \\
\quad f \rightarrow \langle n \rightarrow n + 5, \{ \}\rangle\rangle) &=
\end{align*}
\]
Evaluate $f(4,6)$;

$$\rho_3 = \{n \to 4, m \to 6, \ g \to <n \to n + 5, \ \{ \}>, \ f \to <n \to n + 5, \ \{ \}>>\}$$

$$\text{Eval}((\text{app}(<n \to n + 5, \ \{ \}>, \ 4), \ \text{app} (<n \to n + 5, \ \{ \}>, \ 6)), \ \rho_3) =$$

$$\text{Eval}((\text{Eval}(n + 5, \ \{n \to 4\} + \ { \})), \ (\text{Eval}(n + 5, \ \{n \to 6\} + \ { \}))), \ \rho_3) =$$

$$\text{Eval}((\text{Eval}(4 + 5, \ \{n \to 4\} + \ { \})), \ (\text{Eval}(6 + 5, \ \{n \to 6\} + \ { \}))), \ \rho_3) =$$

$$\text{Eval}((9, 11), \ \rho_3) = (9, 11)$$
Your turn now

Try (* 4 *) from HW2
Match Expressions

let triple_to_pair triple =

match triple
with (0, x, y) -> (x, y)
| (x, 0, y) -> (x, y)
| (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int = <fun>

• Each clause: pattern on left, expression on right
• Each x, y has scope of only its clause
• Use first matching clause
Recursive Functions

let rec factorial n =
 if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>

factorial 5;;
- : int = 120

(* rec is needed for recursive function declarations *)
Your turn now

Try Problem 4 on MP2
Compute n^2 recursively using:
\[n^2 = (2 \times n - 1) + (n - 1)^2 \]

```ocaml
# let rec nthsq n =         (* rec for recursion *)
   match n              (* pattern matching for cases *)
   with 0 -> 0                  (* base case *)
   | n -> (2 * n -1)           (* recursive case *)
      + nthsq (n -1);;   (* recursive call *)

val nthsq : int -> int = <fun>

# nthsq 3;;
- : int = 9
```

Structure of recursion similar to inductive proof
Recursion and Induction

```ocaml
# let rec nthsq n = match n with 0 -> 0 |
| n -> (2 * n - 1) + nthsq (n - 1) ;;
```

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- **if** or **match** must contain base case
- Failure of these may cause failure of termination
Lists

- First example of a recursive datatype (aka algebraic datatype)

- Unlike tuples, lists are homogeneous in type (all elements same type)
Lists

- List can take one of two forms:
 - Empty list, written []
 - Non-empty list, written \(x :: xs \)
 - \(x \) is head element, \(xs \) is tail list, \(:: \) called “cons”
 - Syntactic sugar: \([x] == x :: []\)
 - \([x1; x2; …; xn] == x1 :: x2 :: … :: xn :: []\)
Lists

let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
(8::5::3::2::1::1::[]) = fib5;;
- : bool = true
fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]
Lists are Homogeneous

let bad_list = [1; 3.2; 7];;

Characters 19-22:

let bad_list = [1; 3.2; 7];;

^^^^

This expression has type float but is here used with type int
Question

Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]
Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

3 is invalid because of last pair
Functions Over Lists

let rec double_up list =
 match list
 with [] -> [] (* pattern before ->, expression after *)
 | (x :: xs) -> (x :: x :: double_up xs);
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1; 1; 1]
Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]
Question: Length of list

- Problem: write code for the length of the list
 - How to start?

```fsharp
let length l =
```
Question: Length of list

- Problem: write code for the length of the list
 - How to start?

```ml
let rec length l =
    match l with
```

Question: Length of list

- Problem: write code for the length of the list
 - What patterns should we match against?

```ocaml
let rec length l =
  match l with
```
Question: Length of list

- Problem: write code for the length of the list
 - What patterns should we match against?

```ml
let rec length l =
    match l with [] -> |
                 | (a :: bs) ->
```
Question: Length of list

- Problem: write code for the length of the list
 - What result do we give when \(l \) is empty?

```ocaml
let rec length l =
  match l with [] -> 0
  | (a :: bs) ->
```

9/4/14
Question: Length of list

- Problem: write code for the length of the list
 - What result do we give when \(l \) is not empty?

```ocaml
let rec length l =
  match l with [] -> 0
| (a :: bs) ->
```

9/4/14
Question: Length of list

- Problem: write code for the length of the list
 - What result do we give when \(l \) is not empty?

```ocaml
let rec length l =
  match l with [] -> 0
  | (a :: bs) -> 1 + length bs
```
Your turn now

Try Problem 6 on MP2
Same Length

- How can we efficiently answer if two lists have the same length?
How can we efficiently answer if two lists have the same length?

```
let rec same_length list1 list2 =
    match list1 with [] ->
        (match list2 with [] -> true
            | (y::ys) -> false)
    | (x::xs) ->
        (match list2 with [] -> false
            | (y::ys) -> same_length xs ys)
```
Higher Order Functions

- A function is *higher-order* if it takes a function as an argument or returns one as a result
- Example:

  ```ocaml
  let compose f g = fun x -> f (g x);;
  val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>
  ```

- The type ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b is a higher order type because of ('a -> 'b) and ('c -> 'a) and -> 'c -> 'b
Thrice

- Recall:

```ocaml
# let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
```

- How do you write thrice with compose?
Thrice

- Recall:
  ```ocaml
  # let thrice f x = f (f (f x));;
  val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
  ```

- How do you write thrice with compose?
  ```ocaml
  # let thrice f = compose f (compose f f);;
  val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
  ```

- Is this the only way?
Partial Application

(+);;
- : int -> int -> int = <fun>
(+) 2 3;;
- : int = 5
let plus_two = (+) 2;;
val plus_two : int -> int = <fun>
plus_two 7;;
- : int = 9

- Partial application also called *sectioning*
Lambda Lifting

- You must remember the rules for evaluation when you use partial application.

```ocaml
# let add_two = (+) (print_string "test\n"; 2);;
val add_two : int -> int = <fun>

# let add2 = (* lambda lifted *)
  (fun x -> (+) (print_string "test\n"; 2) x);
val add2 : int -> int = <fun>
```
Lambda Lifting

thrice add_two 5;;
- : int = 11
thrice add2 5;;
test
test
test
- : int = 11

- Lambda lifting delayed the evaluation of the argument to (+) until the second argument was supplied
Partial Application and “Unknown Types”

- Recall compose plus_two:
  ```
  # let f1 = compose plus_two;;
  val f1 : ('_a -> int) -> '_a -> int = <fun>
  ```
- Compare to lambda lifted version:
  ```
  # let f2 = fun g -> compose plus_two g;;
  val f2 : ('a -> int) -> 'a -> int = <fun>
  ```
- What is the difference?
Partial Application and “Unknown Types”

- `'_a can only be instantiated once for an expression

```plaintext
# f1 plus_two;;
- : int -> int = <fun>
# f1 List.length;;
Characters 3-14:
  f1 List.length;;  
    ^^^^^^^^^^^^^^^^ 

This expression has type 'a list -> int but is here used with type int -> int
Partial Application and “Unknown Types”

- ‘a can be repeatedly instantiated

```ocaml
f2 plus_two;;
- : int -> int = <fun>

f2 List.length;;
- : '_a list -> int = <fun>
```
Functions Over Lists

# let rec map f list =
    match list
    with [] -> []
    | (h::t) -> (f h) :: (map f t);

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

# map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]

# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]
Iterating over lists

```ocaml
let rec fold_left f a list =
 match list
 with [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
fold_left
 (fun () -> print_string)
 ()
 ['"hi"'; '"there"'];;
hithere- : unit = ()
```
Iterating over lists

```ocaml
let rec fold_right f list b =
 match list
 with [] -> b
 | (x :: xs) -> f x (fold_right f xs b);
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
fold_right
 (fun s -> fun () -> print_string s)
 "["hi"; "there"]
()();
therehi- : unit = ()
```
Structural Recursion

- Functions on recursive datatypes (e.g., lists) tend to be recursive.
-Recursion over recursive datatypes generally by structural recursion.
  - Recursive calls made to components of structure of the same recursive type.
  - Base cases of recursive types stop the recursion of the function.
# Structural Recursion: List Example

```ml
let rec length list = match list
 with [] -> 0 (* Nil case *)
 | x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>

length [5; 4; 3; 2];;
- : int = 4
```

- Nil case [ ] is base case
- Cons case recurses on component list xs
Forward Recursion

- In Structural Recursion, split input into components and (eventually) recurse
- Forward Recursion form of Structural Recursion
- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results
- Wait until whole structure has been traversed to start building answer
Forward Recursion: Examples

```ocaml
let rec double_up list =
 match list
 with [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
```
# let rec append list1 list2 = match list1 with
[ ] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

Base Case        Operation    Recursive Call

# let append list1 list2 = fold_right (fun x y -> x :: y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

# append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]
Mapping Recursion

- One common form of structural recursion applies a function to each element in the structure

```ml
let rec doubleList list = match list with
 | [] -> []
 | x::xs -> 2 * x :: doubleList xs;
val doubleList : int list -> int list = <fun>
```

```
doubleList [2;3;4];;
- : int list = [4; 6; 8]
```
Mapping Recursion

- Can use the higher-order recursive map function instead of direct recursion

```ocaml
let doubleList list = List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]
```

- Same function, but no rec
Folding Recursion

- Another common form “folds” an operation over the elements of the structure

```ocaml
let rec multList list = match list
 with [] -> 1
 | x::xs -> x * multList xs;;
val multList : int list -> int = <fun>

multList [2;4;6];;
- : int = 48
```

- Computes \((2 \times (4 \times (6 \times 1)))\)
Folding Recursion

- multList folds to the right
- Same as:

    # let multList list =
        List.fold_right
        (fun x -> fun p -> x * p)
        list 1;;

    val multList : int list -> int = <fun>
    # multList [2;4;6];;
    - : int = 48
How long will it take?

- Remember the big-O notation from CS 225 and CS 273
- Question: given input of size $n$, how long to generate output?
- Express output time in terms of input size, omit constants and take biggest power
How long will it take?

Common big-O times:

- Constant time $O(1)$
  - input size doesn’t matter
- Linear time $O(n)$
  - double input $\Rightarrow$ double time
- Quadratic time $O(n^2)$
  - double input $\Rightarrow$ quadruple time
- Exponential time $O(2^n)$
  - increment input $\Rightarrow$ double time
Linear Time

- Expect most list operations to take linear time $O(n)$
- Each step of the recursion can be done in constant time
- Each step makes only one recursive call
- List example: `multList`, `append`
- Integer example: `factorial`
Quadratic Time

- Each step of the recursion takes time proportional to input.
- Each step of the recursion makes only one recursive call.
- List example:

```ocaml
let rec poor_rev list = match list with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;

val poor_rev : 'a list -> 'a list = <fun>
```
Exponential running time

- Hideous running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear
Exponential running time

```ocaml
let rec naiveFib n = match n
 with 0 -> 0
 | 1 -> 1
 | _ -> naiveFib (n-1) + naiveFib (n-2);

val naiveFib : int -> int = <fun>
```
An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished.
- What if $f$ calls $g$ and $g$ calls $h$, but calling $h$ is the last thing $g$ does (a tail call)?
An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished.
- What if \( f \) calls \( g \) and \( g \) calls \( h \), but calling \( h \) is the last thing \( g \) does (a tail call)?
- Then \( h \) can return directly to \( f \) instead of \( g \)
Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls.
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls.
- Tail recursion generally requires extra “accumulator” arguments to pass partial results.
  - May require an auxiliary function.
Tail Recursion - Example

```ocaml
let rec rev_aux list revlist =
 match list with [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];
val rev : 'a list -> 'a list = <fun>
```

- What is its running time?
Comparison

- poor_rev [1,2,3] =
- (poor_rev [2,3]) @ [1] =
- (((poor_rev [3]) @ [2]) @ [1] =
- (((((poor_rev [ ])) @ [3]) @ [2]) @ [1] =
- ((([[ ] @ [3]) @ [2]) @ [1]) =
- ([3] @ [2]) @ [1] =
- (3:: ([ ] @ [2]))) @ [1] =
- [3,2] @ [1] =
- 3 :: ([2] @ [1]) =
- 3 :: (2:: ([ ] @ [1]))) = [3, 2, 1]
Comparison

- \( \text{rev\ [1,2,3]} = \)
- \( \text{rev\_aux\ [1,2,3]\ [\ ]} = \)
- \( \text{rev\_aux\ [2,3]\ [1]} = \)
- \( \text{rev\_aux\ [3]\ [2,1]} = \)
- \( \text{rev\_aux\ [\ ]\ [3,2,1]} = [3,2,1] \)
How are the following functions similar?

```ocaml
let rec sumlist list = match list with
 [] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let rec prodlist list = match list with
 [] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
- : int = 24
```
# let rec fold_left f a list = match list
  with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

fold_left f a [x₁; x₂;…;xₙ] = f(...(f (f a x₁) x₂)...xₙ)

# let rec fold_right f list b = match list
  with [] -> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

fold_right f [x₁; x₂;…;xₙ] b = f x₁(f x₂(...(f xₙ b)...))
Folding - Forward Recursion

# let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>
# sumlist [2;3;4];;
- : int = 9

# let prodlist list = fold_right ( * ) list 1;;
val prodlist : int list -> int = <fun>
# prodlist [2;3;4];;
- : int = 24
Folding - Tail Recursion

- # let rev list =
-   fold_left
-   (fun l -> fun x -> x :: l)  //comb op
-   []  //accumulator cell
-   list
Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
  - Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition