
MP 1 – Basic OCaml
CS 421 – Fall 2013

Revision 1.0

Assigned August 27, 2013
Due September 3, 2013, 11:59 PM
Extension 48 hours (penalty 20% of total points possible)

1 Change Log
1.0 Initial Release.

2 Objectives and Background
The purpose of this MP is to test the student’s ability to

• start up and interact with OCaml;

• define a function;

• write code that conforms to the type specified (this includes understanding simple Ocaml types, including func-
tional ones);

Another purpose of MPs in general is to provide a framework to study for the exam. Several of the questions on
the exam will appear similar to the MP problems. By the time of the exam, your goal is to be able to solve any of the
following problems with pen and paper in less than 2 minutes.

3 What to handin
You should put code answering each of the problems below in a file called mp1.ml. A good way to start is to copy
mp1-skeleton.ml to mp1.ml and edit the copy. If you choose not to start this way, please be sure to place

open Mp1common

at the top of you file. Please read the Guide for Doing MPs in

http://courses.engr.illinois.edu/cs421/mps/index.html

Also, please read the section How do I handin my MPs and HWs? in

http://courses.engr.illinois.edu/cs421/faq.html#how_to_handin

4 Problems
Note: In the problems below, you do not have to begin your definitions in a manner identical to the sample code,
which is present solely for guiding you better. However, you have to use the indicated name for your functions and
values, and they will have to conform to any type information supplied, and have to yield the same results as any
sample executions given, as well as satisfying the specification given in English.

1

1. (1 pt) Declare a variable title with the value "MP 1 -- Basic OCaml". It should have type string. It
shoud not contain a “newline”.

2. (1 pt) Declare a variable e with a value of 2.71828. It should have the type of float.

3. (2 pts) Write a function firstFun that returns the result of mulitplying a given integer by 2 and adding 5.

let firstFun n = ... ;;
val firstFun : int -> int = <fun>
firstFun 12;;
- : int = 29

4. (2 pts) Write a function divide e by that returns the result of dividing the value you gave in Problem 2 by the
given float. You will not be tested on the value 0.0.

let divide_e_by x = ...;;
val divide_e_by : float -> float = <fun>
divide_e_by e;;
- : float = 1.

(Your value may vary slightly from that printed here if you use a machine of different precision.)

5. (3 pts) Write a function diff square 9 that takes an integer and if the integer is between 3 and -3, squares it
and substracts 9, and otherwise substracts its square from 9.

let diff_square_9 m = ...;;
val diff_square_9 : int -> int = <fun>
diff_square_9 5;;
- : int = -16

6. (3 pts) Write a function dist double that, when given a string and an integer, first prints the string, a comma
and a space, then “I guess it’s double or nothing!” followed by a newline, and then returns double
the integer it was given.

let dist_double s n = ...;;
val dist_double : string -> int -> int = <fun>
dist_double "Well, Sam" 8;;
Well, Sam, I guess it’s double or nothing!
- : int = 16

7. (3 pts) Write a function swizzle that takes a 4-tuple (quadruple) and returns the 4-tuple with the first component
moved to the third, the third moved to the second, the second moved to the fourth and the fourth moved to the first.

let swizzle (w,x,y,z) = ... ;;
val swizzle : ’a * ’b * ’c * ’d -> ’d * ’c * ’a * ’b = <fun>
swizzle (1,2,3,4);;
- : int * int * int * int = (4, 3, 1, 2)

8. (4 pts) Write a function left right compose that takes a first function f , then a second function g, and returns
the result of pre- and post-composing g with f to get f ◦ g ◦ f .

2

let left_right_compose f g = fun x -> f(g(f(x)));;
val left_right_compose : (’a -> ’b) -> (’b -> ’a) -> ’a -> ’b = <fun>
left_right_compose firstFun (dist_double "Oh my") 17;;
Oh my, I guess it’s double or nothing!
- : int = 161

3

