
MP 3 – Patterns of Recursion, Higher-order
Functions

CS 421 – Fall 2012
Revision 1.0

Assigned September 11, 2012
Due September 18, 2012 23:59
Extension 48 hours (20% penalty)

1 Change Log
1.0 Initial Release.

2 Objectives and Background
The purpose of this MP is to help the student master:

1. forward recursion and tail recursion

2. higher-order functions

3 Instructions
The problems below have sample executions that suggest how to write answers. Students have to use the same function
name, but the name of the parameters that follow the function name need not be duplicated. That is, the students are
free to choose different names for the arguments to the functions from the ones given in the example execution. We
also will use let rec to begin the definition of some of the functions that are allowed to use recursion. You are not
required to start your code with let rec. Similarly, if you are not prohibited from using explicit recursion in a given
problem, you may change any function defintion from starting with just let to starting with let rec.

For all these problems, you are allowed to write your own auxiliary functions, either internally to the function being
defined or externally as separate functions. In fact, you will find it helpful to do so on several problems. All helper
functions must satisfy any coding restrictions (such as being in tail recursive form, or not using explicit recursion) as
the main function being defined for the problem must satisfy.

Here is a list of the strict requirements for the assignment.

• The function name must be the same as the one provided.

• The type of parameters must be the same as the parameters shown in sample execution.

• Students must comply with any special restrictions for each problem. Some of the problems require that the
solution should be in forward recursive form or tail-recursive form, while others ask students to use higher-
order functions in place of recursion.

4 Problems
• In problems 1 and 2 you must use forward recursion.

• In problems 3 and 4 you must use tail recursion.

1

• In problems 5 – 7, you may not use recursion.

Note: All library functions are off limits for all problems in this assignment, except those that are specifically men-
tioned as required/allowed. For purposes of this assignment @ is treated as a library function and is not to be used.

4.1 Patterns of recursion
1. (4 pts) Write a function split, that, when applied to a test function f, and a list lst, returns a pair of lists. The

first list of the pair should contain every element x of lst for which (f x) is true; and the second list contains
every element for which (f x) is false. The order of the elements in the returned lists should be the same as in
the original list. The function is required to use (only) forward recursion (no other form of recursion). You may
not use any library functions.

let rec split f lst = ...;;
val split : (’a -> bool) -> ’a list -> ’a list * ’a list = <fun>
split (fun x -> x > 2) [0;2;3;5;1;4];;
- : int list * int list = ([3; 5; 4], [0; 2; 1])

2. (5 pts) Run-length encoding (RLE) is a data compression technique in which maximal (non-empty) consecutive
occurrences of a value are replaced by pa pair of the value and a counter showing how many times the value was
repeated in that consecutive sequence. For example, RLE would encode the list [1;1;1;2;2;2;3;1;1;1]
as: [(1,3);(2,3);(3,1);(1;3)]. Write a function rle : ’a list -> (’a * int) list =
<fun> that takes a list and encodes it using the RLE technique. The function is required to use (only) forward
recursion (no other form of recursion). You may not use any library functions.

let rec rle lst = ... ;;
val rle : ’a list -> (’a * int) list = <fun>
rle [1;1;1;2;2;2;3;1;1;1];;
- : (int * int) list = [(1, 3); (2, 3); (3, 1); (1, 3)]

3. (5 pts) For two lists L1 and L2, L2 is called a sub-list of L1 if: (a) all the elements of L2 occur in L1, and (b) their
order in L1 is exactly the same as their order in L2. Write a function sub list : ’a list -> ’a list
-> bool = <fun> that takes two lists as input and determines whether the second list is a sub-list of the first
one. The function is required to use (only) tail recursion (no other form of recursion). You may not use any library
functions.

let rec sub_list l1 l2 = ...;;
val sub_list : ’a list -> ’a list -> bool = <fun>
sub_list [1;1;2;1;1;4;1] [1;2;1;1;1];;
- : bool = true

4. (7 pts) Write a function concat : string -> string list -> string such that concat s l
creates a string consisting of the strings in the list l concatenated together, with the first string s inserted between.
If the list is empty, you should return the empty string (""). If the list is a singleton, you should return just the
single string in that list. The function is required to use (only) tail recursion (no other form of recursion). You may
not use any library functions.

let rec concat s list = ... ;;
val concat : string -> string list -> string = <fun>
concat " * " ["3"; "6"; "2"];;
- : string = "3 * 6 * 2"

2

4.2 Higher order functions
5. (5 pts) Write a base value split base and a step function split step such that

List.fold right (split step f) lst split base behaves the same as the split f lst as de-
scribed in Problem 1.

let split_base = ...
val split_base : ’a list * ’b list = ...
let split_step f x (true_xs, false_xs) = ...
val split_step : (’a -> bool) -> ’a -> ’a list * ’a list -> ’a list * ’a list =
<fun>

List.fold_right (split_step (fun x -> x > 2)) [0;2;3;5;1;4] split_base;;
- : int list * int list = ([3; 5; 4], [0; 2; 1])

6. (5 pts) Write a function rle2:’a list -> (’a * int) list that computes the same results as rle
from Problem 2. The definition of rle2 may use List.fold right : (’a -> ’b -> ’b) -> ’a
list -> ’b -> ’b but no direct use of recursion, and no other library functions.

let rle2 lst = ... ;;
val rle2 : ’a list -> (’a * int) list = <fun>
rle2 [1;1;1;2;2;2;3;1;1;1];;
- : (int * int) list = [(1, 3); (2, 3); (3, 1); (1, 3)]

7. (7 pts) Write a function concat2 : string -> string list -> string that computes the same
results as concat of Problem 4. The definition of concat2 may use List.fold left : (’a -> ’b
-> ’a) -> ’a -> ’b list -> ’a but no direct use of recursion, and no other library functions.

let concat2 s list = ...;;
val concat2 : string -> string list -> string = <fun>
concat2 " * " ["3"; "6"; "2"];;
- : string = "3 * 6 * 2"

8. (8 pts) Write a function app all : (’a -> ’b) list -> ’a list -> ’b list list that takes
a list of functions, and a list of arguments for those functions, and returns the list of list of results from consecutively
applying the functions to all arguments, in the order in which the functions occur in the list and in the order in
which the arguments occur in the list. Each list in the result list corresponds to a list of applications of each function
to the given arguments. The definition of app all may use the library function List.map : (’a -> ’b)
-> ’a list -> ’b list but no direct use of recursion, and no other library function.

let app_all fs list = ... ;;
val app_all : (’a -> ’b) list -> ’a list -> ’b list list = <fun>
app_all [(fun x -> x > 0); (fun y -> y mod 2 = 0);

(fun x -> x * x = x)] [1; 3; 6];;
- : bool list list =
[[true; false; true]; [true; false; false]; [true; true; false]]

3

4.3 Extra Credit
9. (4 pts) Write a function sub list2 that computes the same results as sub list of Problem 3. The definition

of sub list2 may use List.fold left : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a but
no direct use of recursion, and no other library functions.

let sub_list2 l1 l2 = ...;;
val sub_list : ’a list -> ’a list -> bool = <fun>
sub_list2 [1;1;2;1;1;4;1] [1;2;1;1;1];;
- : bool = true

4

	Change Log
	Objectives and Background
	Instructions
	Problems
	Patterns of recursion
	Higher order functions
	Extra Credit

