
MP 2 – Pattern Matching and Recursion
CS 421 – Fall 2012

Revision 1.0

Assigned September 4, 2012
Due September 11, 2012 23:59
Extension 48 hours (20% penalty)

1 Change Log
1.0 Initial Release.

2 Objectives and Background
The purpose of this MP is to help the student master:

• pattern matching

• higher-order functions

• recursion

3 Instructions
The problems below have sample executions that suggest how to write answers. You have to use the same function
name, but the name of the parameters that follow the function name need not be duplicated. That is, you are free
to choose different names for the arguments to the functions from the ones given in the example execution. We will
sometimes use let rec to begin the definition of a function that is allowed to use rec. You are not required to start
your code with let rec, and you may use let rec when we do not.

For all these problems, you are allowed to write your own auxiliary functions, either internally to the function
being defined or externally as separate functions. In fact, you will find it helpful to do so on several problems. In this
assignment, you may not use any library functions other than @ and mod except where explicitly noted.

4 Problems
1. (3 pts) Complex numbers can be represented as a pair of floating point numbers, the real part and the imaginary

part. Complex multiplication is defined as (x + yi)(u + vi) = (xu − yv) + (xv + yu)i. Write com mul :
(float * float) * (float * float) -> (float * float) that takes two complex numbers as
a pair of pairs of floating point numbers, and output the multiplication of them.

let com_mul r = ...;;
val com_mul : (float * float) * (float * float) -> float * float = <fun>
com_mul ((4., 0.), (2., 3.));;
- : float * float = (8., 12.)

1

2. (3 pts) Consider the following mathematical definition of a sequence sn:

sn =

0 if n = 0

1 if n = 1

2s(n−2) + 2n if n > 0 and n = 2m

3s(n−2) + 3n if n > 1 and n = 2m + 1

Write a Ocaml function s : int -> int that implements the sequence sn. For n ≤ 0, you should return 0.

let rec s n = ...;;
val s : int -> int = <fun>
s 5;;
- : int = 51

3. (3 pts) Write a function list all : (’a -> bool) -> ’a list -> bool that takes a predicate and
a list and decides if all the elements of the list satisfies the predicate.

let rec list_all p xs = ...;;
val list_all : (’a -> bool) -> ’a list -> bool = <fun>
list_all (fun x -> x < 0) [1;-1;0;4;-2;5];;
- : bool = false

4. (3 pts) Write a function is less : ’a -> ’a list -> bool that decides if the first argument is less
than all the elements of the list.

let rec is_less x xs = ...
val is_less : ’a -> ’a list -> bool = <fun>
is_less 5 [1;34;42;6];;
- : bool = false

5. (5 pts) Write a function interleave : ’a list -> ’a list -> ’a list that takes two lists and
returns a list. The first element of the new list should be the first element of the first list and the second element of
the new list should be the first element of the second list; then, the third element of the new list will be the second
element of the first list and the fourth element of the new list will be the second element of the second list, and so
on. If one list is longer than the other, put the extra elements on the end of the new list. Also, if either list is empty,
interleave returns the other list.

let rec interleave xs ys = ...;;
val interleave : ’a list -> ’a list -> ’a list = <fun>
interleave [1;2;5] [3;4];;
- : int list = [1; 3; 2; 4; 5]

6. (5 pts) Write a function separate : ’a list -> ’a list * ’a list that takes a list and outputs a
pair of lists with the elements of first list containing all the even positions of the original list and the elements of
the second list contains all the odd positions of the original list. The counting of the list positions starts from zero.

let rec separate xs = ...;;
val separate : ’a list -> ’a list * ’a list = <fun>
separate [1; 3; 2; 4; 5];;
- : int list * int list = ([1; 2; 5], [3; 4])

2

7. (7 pts) Suppose that we have a record of discrete events, ordered 1 through n, occurring in a given sample space.
We may record the frequency distribution of these events in that space by a list [f1, . . . , fn] where fi is the number
of occurrences of the ith event in the sample space. Then, the probability pi of the ith event occurring in the sample
space is given by

pi =
fi

Σifi

Let’s have some fun here. Write a function odds : int list -> (int * int) list that takes a list
of intergers and returns a list of pairs of intergers, where the first element of the pair is the numerator of a rational
number and the second element of the pair is the denominator of the rational number, the the rational number
represented by the ith element is the probabilty of the ith event occuring.

Hint: You may want to write one or more auxiliary functions.

let rec odds xs = ...;;
val odds xs : int list -> (int * int) list = <fun>
odds [3;7;9];;
- : (int * int) list = [(3, 19); (7, 19); (9, 19)]

8. (7 pts) Recall that a directed graph is a pair G = (V,A) where

• V is a set of vertices or nodes,

• A is a set of ordered pairs of vertices, called arcs, directed edges, or arrows.

When we implements the directd graph, we usually use an initial interval of integers to represent V , and an
adjacency matrix or list to represent the set A.

In this problem we will use an adjacency list to represent the set A. This means that we will use the integer list list
to represent the adjacency list of a graph, and it has one list per node in the integer list list. The ith position of the
list contains all the nodes connected to the ith node by an out-going edge, where the integers in each list represent
the position of the corresponding node in the adjacency list. The labeling of nodes start from zero, and elements
in the list are counted from zero. Write a function check adj : int list list -> int * int ->
bool that takes an adjacency list and a pair of integers to check if there exists a edge from the first element to
the second one. Remember that this is a directed graph. In this problem, you may use any library functions you
choose. Also, the input integers in the lists will always be nonnegative, and you can safely assume that we will not
test on any number which is bigger than the graph size minus one. However, if the input pair of integers contains
a negative number, you should return false. Note OCamls type inference may infer a more general type for your
solution than the type listed above, so do not panic.

let check_adj adj_list (a,b) = ...
val check_adj : ’a list list -> int * ’a -> bool = <fun>
check_adj [[1;2;3;4];[3;0;4;5];[1;4;3;5];[2;1];[1;2];[2;3;4]] (0,3);;
- : bool = true

4.1 Extra Credit
9. (5 pts)

The description of and implementaion of graphs is the same as in Problem 8. Write a function check path :
int list list -> int * int -> bool that takes an adjacency list and a pair of integers to check if
there exists a path from the first element to the second one. A path is the transitive closure of adjacency. That
is, if b is adjacent to a, then there is a path from a to b, and if there is a path for a to some third node c and a

3

further path from c to b, then there is a path from a to b. The node a will not have a path to itself if the graph
does not specify it explicitly. Remember that this is a directed graph. As before, the input integers in the lists will
always be nonnegative, and you can safely assume that we will not test on any number which is bigger than the
graph size minus one. However, if the input pair of integers contains a negative number, you should return false. In
this problem, you may use any library function of your choosing. Note OCaml’s type inference may infer a more
general type for your solution, so do not panic.

let rec check_path adj_list (a,b) = ...
val check_path : int list list -> int * int -> bool = <fun>
check_path [[1;2;3;4];[3;0;4;5];[1;4;3;5];[2;1];[1;2];[2;3;4]] (0,5);;
- : bool = true

4

