
©2011 Azul Systems, Inc.	 	 	 	 	 	

Understanding
Garbage Collection

in managed runtime environments

Gil Tene, CTO & co-Founder, Azul Systems

1

©2011 Azul Systems, Inc.	 	 	 	 	 	

This Talk’s Purpose / Goals
This talk is focused on GC education

This is not a “how to use flags to tune a collector” talk

This is a talk about how the “GC machine” works

Purpose: Once you understand how it works, you can
use your own brain...

You’ll learn just enough to be dangerous...

The “Azul makes the world’s greatest GC” stuff will
only come at the end, I promise...

2

©2011 Azul Systems, Inc.	 	 	 	 	 	

About me: Gil Tene

co-founder, CTO
@Azul Systems

Have been working on
a “think different” GC
approaches since 2002

Created Pauseless & C4
core GC algorithms
(Tene, Wolf)

A Long history building
Virtual & Physical
Machines, Operating
Systems, Enterprise
apps, etc... * working on real-world trash compaction issues, circa 2004

3

©2011 Azul Systems, Inc.	 	 	 	 	 	

About Azul

We make scalable Virtual
Machines

Have built “whatever it takes
to get job done” since 2002

3 generations of custom SMP
Multi-core HW (Vega)

Now Pure software for
commodity x86 (Zing)

“Industry firsts” in Garbage
collection, elastic memory,
Java virtualization, memory
scale

Vega

C4

4

©2011 Azul Systems, Inc.	 	 	 	 	 	

High level agenda

GC fundamentals and key mechanisms

Some GC terminology & metrics

Classifying current commercially available collectors

Why Stop-The-World is a problem

The C4 collector: What a solution to STW looks like...

5

©2011 Azul Systems, Inc.	 	 	 	 	 	

Why should you care about GC?

6

©2011 Azul Systems, Inc.	 	 	 	 	 	

What is Garbage Collection good for?

Prevalent in modern languages and platforms
Java, .NET, Ruby, Scala, Groovy, Clojure, …

Productivity, stability
Programmers not responsible for freeing and destroying objects

Eliminates entire (common) areas of instability, delay, maintenance

Guaranteed interoperability
No “memory management contract” needed across APIs

Uncoordinated libraries, frameworks, utilities seamlessly interoperate

Facilitates practical use of large amounts of memory
Complex and intertwined data structures, in and across unrelated
components

7

©2011 Azul Systems, Inc.	 	 	 	 	 	

Why should you understand
(at least a little) how GC works?

8

©2011 Azul Systems, Inc.	 	 	 	 	 	

The story of the good little architect

A good architect must, first and foremost, be able to
impose their architectural choices on the project...

Early in Azul’s concurrent collector days, we
encountered an application exhibiting 18 second pauses

Upon investigation, we found the collector was performing 10s of
millions of object finalizations per GC cycle

*We have since made reference processing fully concurrent...

Every single class written in the project had a finalizer
The only work the finalizers did was nulling every reference field

The right discipline for a C++ ref-counting environment
The wrong discipline for a precise garbage collected environment

9

©2011 Azul Systems, Inc.	 	 	 	 	 	

Much of what People seem to “know”
about Garbage Collection is wrong

In many cases, it’s much better than you may think
GC is extremely efficient. Much more so that malloc()

Dead objects cost nothing to collect

GC will find all the dead objects (including cyclic graphs)

...

In many cases, it’s much worse than you may think
Yes, it really does stop for ~1 sec per live GB

No, GC does not mean you can’t have memory leaks

No, those pauses you eliminated from your 20 minute test are
not gone

...

10

©2011 Azul Systems, Inc.	 	 	 	 	 	

Trying to solve GC problems in application
architecture is like throwing knives

You probably shouldn’t do it blindfolded

It takes practice to do it well without hurting people

You can get very good at it, but do you really want to?
Will all the code you leverage be as good as yours?

Examples of “GC friendly” techniques:
Object pooling

Off heap storage

Distributed heaps

...

(In most cases, you end up building your own garbage collector)

11

©2011 Azul Systems, Inc.	 	 	 	 	 	

Some GC Terminology

12

©2011 Azul Systems, Inc.	 	 	 	 	 	

A Basic Terminology example:
What is a concurrent collector?

A Concurrent Collector performs garbage collection
work concurrently with the application’s own execution

A Parallel Collector uses multiple CPUs to perform
garbage collection

13

©2011 Azul Systems, Inc.	 	 	 	 	 	

A Concurrent Collector performs garbage collection
work concurrently with the application’s own execution

A Parallel Collector uses multiple CPUs to perform
garbage collection

Classifying a collector’s operation

An Incremental collector performs a garbage collection
operation or phase as a series of smaller discrete
operations with (potentially long) gaps in between

A Stop-the-World collector performs garbage
collection while the application is completely stopped

Mostly means sometimes it isn’t (usually means a
different fall back mechanism exists)

14

©2011 Azul Systems, Inc.	 	 	 	 	 	

Precise vs. Conservative Collection

A Collector is Conservative if it is unaware of some
object references at collection time, or is unsure
about whether a field is a reference or not

A Collector is Precise if it can fully identify and
process all object references at the time of collection

A collector MUST be precise in order to move objects

The COMPILERS need to produce a lot of information (oopmaps)

All commercial server JVMs use precise collectors
All commercial server JVMs use some form of a moving collector

15

©2011 Azul Systems, Inc.	 	 	 	 	 	

Safepoints
A GC Safepoint is a point or range in a thread’s
execution where the collector can identify all the
references in that thread’s execution stack

“Safepoint” and “GC Safepoint” are often used interchangeably
But there are other types of safepoints, including ones that require
more information than a GC safepoint does (e.g. deoptimization)

“Bringing a thread to a safepoint” is the act of
getting a thread to reach a safepoint and not execute
past it

Close to, but not exactly the same as “stop at a safepoint”
e.g. JNI: you can keep running in, but not past the safepoint

Safepoint opportunities are (or should be) frequent

In a Global Safepoint all threads are at a Safepoint
16

©2011 Azul Systems, Inc.	 	 	 	 	 	

What’s common to all
precise GC mechanisms?

Identify the live objects in the memory heap

Reclaim resources held by dead objects

Periodically relocate live objects

Examples:

Mark/Sweep/Compact (common for Old Generations)

Copying collector (common for Young Generations)

17

©2011 Azul Systems, Inc.	 	 	 	 	 	

Mark (aka “Trace”)

Start from “roots” (thread stacks, statics, etc.)

“Paint” anything you can reach as “live”

At the end of a mark pass:

all reachable objects will be marked “live”

all non-reachable objects will be marked
“dead” (aka “non-live”).

Note: work is generally linear to “live set”

18

©2011 Azul Systems, Inc.	 	 	 	 	 	

Sweep

Scan through the heap, identify “dead” objects and
track them somehow

(usually in some form of free list)

Note: work is generally linear to heap size

19

©2011 Azul Systems, Inc.	 	 	 	 	 	

Compact

Over time, heap will get “swiss cheesed”: contiguous
dead space between objects may not be large
enough to fit new objects (aka “fragmentation”)

Compaction moves live objects together to reclaim
contiguous empty space (aka “relocate”)

Compaction has to correct all object references to
point to new object locations (aka “remap”)

Remap scan must cover all references that could
possibly point to relocated objects

Note: work is generally linear to “live set”
20

©2011 Azul Systems, Inc.	 	 	 	 	 	

Copy

A copying collector moves all lives objects from a
“from” space to a “to” space & reclaims “from” space

At start of copy, all objects are in “from” space and
all references point to “from” space.

Start from “root” references, copy any reachable
object to “to” space, correcting references as we go

At end of copy, all objects are in “to” space, and all
references point to “to” space

Note: work generally linear to “live set”

21

©2011 Azul Systems, Inc.	 	 	 	 	 	

Mark/Sweep/Compact, Copy, Mark/Compact

Copy requires 2x the max. live set to be reliable

Mark/Compact [typically] requires 2x the max. live set
in order to fully recover garbage in each cycle

Mark/Sweep/Compact only requires 1x (plus some)

Copy and Mark/Compact are linear only to live set

Mark/Sweep/Compact linear (in sweep) to heap size

Mark/Sweep/(Compact) may be able to avoid some
moving work

Copying is [typically] “monolithic”
22

©2011 Azul Systems, Inc.	 	 	 	 	 	

Generational Collection

Weak Generational Hypothesis; “most objects die young”

Focus collection efforts on young generation:

Use a moving collector: work is linear to the live set

The live set in the young generation is a small % of the space

Promote objects that live long enough to older generations

Only collect older generations as they fill up

“Generational filter” reduces rate of allocation into older generations

Tends to be (order of magnitude) more efficient

Great way to keep up with high allocation rate

Practical necessity for keeping up with processor throughput

23

©2011 Azul Systems, Inc.	 	 	 	 	 	

Generational Collection

Requires a “Remembered set”: a way to track all
references into the young generation from the outside

Remembered set is also part of “roots” for young
generation collection

No need for 2x the live set: Can “spill over” to old gen

Usually want to keep surviving objects in young
generation for a while before promoting them to the
old generation

Immediate promotion can significantly reduce gen. filter efficiency

Waiting too long to promote can eliminate generational benefits

24

©2011 Azul Systems, Inc.	 	 	 	 	 	

How does the remembered set work?
Generational collectors require a “Remembered set”: a
way to track all references into the young generation
from the outside

Each store of a NewGen reference into and OldGen
object needs to be intercepted and tracked

Common technique: “Card Marking”

A bit (or byte) indicating a word (or region) in OldGen is “suspect”

Write barrier used to track references

Common technique (e.g. HotSpot): blind stores on reference write

Variants: precise vs. imprecise card marking, conditional vs. non-
conditional

25

©2011 Azul Systems, Inc.	 	 	 	 	 	

The typical combos
in commercial server JVMS

Young generation usually uses a copying collector

Young generation is usually monolithic, stop-the-world

Old generation usually uses Mark/Sweep/Compact

Old generation may be STW, or Concurrent, or
mostly-Concurrent, or Incremental-STW, or mostly-
Incremental-STW

26

©2011 Azul Systems, Inc.	 	 	 	 	 	

Mutator
Your program…

Parallel
Can use multiple CPUs

Concurrent
Runs concurrently with program

Pause
A time duration in which the
mutator is not running any code

Stop-The-World (STW)
Something that is done in a pause

Monolithic Stop-The-World
Something that must be done in
it’s entirety in a single pause

Useful terms for discussing
garbage collection

Generational
Collects young objects and long lived
objects separately.

Promotion
Allocation into old generation

Marking
Finding all live objects

Sweeping
Locating the dead objects

Compaction
Defragments heap
Moves objects in memory
Remaps all affected references
Frees contiguous memory regions

27

©2011 Azul Systems, Inc.	 	 	 	 	 	

Heap population (aka Live set)
How much of your heap is alive

Allocation rate
How fast you allocate

Mutation rate
How fast your program updates
references in memory

Heap Shape
The shape of the live object graph
* Hard to quantify as a metric...

Object Lifetime
How long objects live

Useful metrics for discussing
garbage collection

Cycle time
How long it takes the collector to free
up memory

Marking time
How long it takes the collector to find
all live objects

Sweep time
How long it takes to locate dead
objects
* Relevant for Mark-Sweep

Compaction time
How long it takes to free up memory
by relocating objects
* Relevant for Mark-Compact

28

©2011 Azul Systems, Inc.	 	 	 	 	 	

Empty memory
and CPU/throughput

29

©2011 Azul Systems, Inc.	 	 	 	 	 	

Two Intuitive limits

If we had exactly 1 byte of empty memory at all
times, the collector would have to work “very hard”,
and GC would take 100% of the CPU time

If we had infinite empty memory, we would never have
to collect, and GC would take 0% of the CPU time

GC CPU % will follow a rough 1/x curve between these
two limit points, dropping as the amount of memory
increases.

30

100%

CPU%

Heap size
Live set

Heap size vs.
GC CPU %

31

©2011 Azul Systems, Inc.	 	 	 	 	 	

Empty memory needs
(empty memory == CPU power)

The amount of empty memory in the heap is the
dominant factor controlling the amount of GC work

For both Copy and Mark/Compact collectors, the
amount of work per cycle is linear to live set

The amount of memory recovered per cycle is equal to
the amount of unused memory (heap size - live set)

The collector has to perform a GC cycle when the
empty memory runs out

A Copy or Mark/Compact collector’s efficiency doubles
with every doubling of the empty memory

32

©2011 Azul Systems, Inc.	 	 	 	 	 	

What empty memory controls

Empty memory controls efficiency (amount of collector
work needed per amount of application work
performed)

Empty memory controls the frequency of pauses (if
the collector performs any Stop-the-world operations)

Empty memory DOES NOT control pause times (only
their frequency)

In Mark/Sweep/Compact collectors that pause for
sweeping, more empty memory means less frequent but
LARGER pauses

33

©2011 Azul Systems, Inc.	 	 	 	 	 	

Some non monolithic-STW stuff

34

©2011 Azul Systems, Inc.	 	 	 	 	 	

Concurrent Marking
Mark all reachable objects as “live”, but object graph
is “mutating” under us.

Classic concurrent marking race: mutator may move
reference that has not yet been seen by the marker
into an object that has already been visited

If not intercepted or prevented in some way, will corrupt the heap

Example technique: track mutations, multi-pass marking

Track reference mutations during mark (e.g. in card table)

Re-visit all mutated references (and track new mutations)

When set is “small enough”, do a STW catch up (mostly concurrent)

Note: work grows with mutation rate, may fail to finish
35

©2011 Azul Systems, Inc.	 	 	 	 	 	

Incremental Compaction

Track cross-region remembered sets (which region
points to which)

To compact a single region, only need to scan regions
that point into it to remap all potential references

identify regions sets that fit in limited time

Each such set of regions is a Stop-the-World increment

Safe to run application between (but not within) increments

Note: work can grow with the square of the heap size

The number of regions pointing into a single region is generally
linear to the heap size (the number of regions in the heap)

36

©2011 Azul Systems, Inc.	 	 	 	 	 	

Delaying the inevitable
Some form of copying/compaction is inevitable in practice

And compacting anything requires scanning/fixing all references to it

Delay tactics focus on getting “easy empty space” first
This is the focus for the vast majority of GC tuning

Most objects die young [Generational]
So collect young objects only, as much as possible. Hope for short STW.
But eventually, some old dead objects must be reclaimed

Most old dead space can be reclaimed without moving it
[e.g. CMS] track dead space in lists, and reuse it in place
But eventually, space gets fragmented, and needs to be moved

Much of the heap is not “popular” [e.g. G1, “Balanced”]
A non popular region will only be pointed to from a small % of the heap
So compact non-popular regions in short stop-the-world pauses
But eventually, popular objects and regions need to be compacted

37

©2011 Azul Systems, Inc.	 	 	 	 	 	

Classifying common collectors

38

©2011 Azul Systems, Inc.	 	 	 	 	 	

The typical combos
in commercial server JVMs

Young generation usually uses a copying collector

Young generation is usually monolithic, stop-the-world

Old generation usually uses a Mark/Sweep/Compact
collector

Old generation may be STW, or Concurrent, or mostly-Concurrent,
or Incremental-STW, or mostly-Incremental-STW

39

©2011 Azul Systems, Inc.	 	 	 	 	 	

HotSpot™ ParallelGC
Collector mechanism classification

Monolithic Stop-the-world copying NewGen

Monolithic Stop-the-world Mark/Sweep/Compact OldGen

40

©2011 Azul Systems, Inc.	 	 	 	 	 	

HotSpot™ ConcMarkSweepGC (aka CMS)
Collector mechanism classification

Monolithic Stop-the-world copying NewGen (ParNew)

Mostly Concurrent, non-compacting OldGen (CMS)
Mostly Concurrent marking

Mark concurrently while mutator is running
Track mutations in card marks
Revisit mutated cards (repeat as needed)
Stop-the-world to catch up on mutations, ref processing, etc.

Concurrent Sweeping
Does not Compact (maintains free list, does not move objects)

Fallback to Full Collection (Monolithic Stop the world).
Used for Compaction, etc.

41

©2011 Azul Systems, Inc.	 	 	 	 	 	

HotSpot™ G1GC (aka “Garbage First”)
Collector mechanism classification

Monolithic Stop-the-world copying NewGen

Mostly Concurrent, OldGen marker
Mostly Concurrent marking

Stop-the-world to catch up on mutations, ref processing, etc.

Tracks inter-region relationships in remembered sets

Stop-the-world mostly incremental compacting old gen
Objective: “Avoid, as much as possible, having a Full GC…”
Compact sets of regions that can be scanned in limited time
Delay compaction of popular objects, popular regions

Fallback to Full Collection (Monolithic Stop the world).
Used for compacting popular objects, popular regions, etc.

42

©2011 Azul Systems, Inc.	 	 	 	 	 	

The “Application Memory Wall”

or: Why stop-the-world garbage
collection is a problem

43

©2011 Azul Systems, Inc.	 	 	 	 	 	

Memory use
 How many of you use heap sizes of:

 F more than ½ GB?

 F more than 1 GB?

 F more than 2 GB?

 F more than 4 GB?

 F more than 10 GB?

 F more than 20 GB?

44

Reality check: servers in 2012

Retail prices, major web server store (US $, July 2012)

Cheap (< $1/GB/Month), and roughly linear to ~1TB

10s to 100s of GB/sec of memory bandwidth

16 vCore, 96GB server ≈ $5K

16 vCore, 256GB server ≈ $9K

24 vCore, 384GB server ≈ $14K

32 vCore, 1TB server ≈ $35K

45

©2011 Azul Systems, Inc.	 	 	 	 	 	

The Application Memory Wall
A simple observation:

Application instances appear to be unable to
make effective use of modern server memory
capacities

The size of application instances as a % of a
server’s capacity is rapidly dropping

46

©2011 Azul Systems, Inc.	 	 	 	 	 	

How much memory do applications need?

“640KB ought to be enough for anybody”

WRONG!

So what’s the right number?
6,400K?
64,000K?
640,000K?
6,400,000K?
64,000,000K?

There is no right number

Target moves at 50x-100x per decade

“I've said some stupid things and
some wrong things, but not that.
No one involved in computers
would ever say that a certain
amount of memory is enough for
all time …” - Bill Gates, 1996

47

©2011 Azul Systems, Inc.	 	 	 	 	 	

“Tiny” application history

100KB apps on a ¼ to ½ MB Server

10MB apps on a 32 – 64 MB server

1GB apps on a 2 – 4 GB server

??? GB apps on 256 GB
Assuming Moore’s Law means:

 “transistor counts grow at ≈2x
every ≈18 months”

It also means memory size grows
 ≈100x every 10 years

2010

2000

1990

1980

“Tiny”: would be “silly” to distribute

Application
Memory Wall

48

©2011 Azul Systems, Inc.	 	 	 	 	 	

What is causing the
Application Memory Wall?

Garbage Collection is a clear and dominant cause

There seem to be practical heap size limits for
applications with responsiveness requirements

[Virtually] All current commercial JVMs will exhibit a
multi-second pause on a normally utilized 2-6GB heap.

It’s a question of “When” and “How often”, not “If”.

GC tuning only moves the “when” and the “how often” around

Root cause: The link between scale and responsiveness

49

What quality of GC is responsible
for the Application Memory Wall?

It is NOT about overhead or efficiency:
CPU utilization, bottlenecks, memory consumption and utilization

It is NOT about speed
Average speeds, 90%, 95% speeds, are all perfectly fine

It is NOT about minor GC events (right now)
GC events in the 10s of msec are usually tolerable for most apps

It is NOT about the frequency of very large pauses

It is ALL about the worst observable pause behavior

People avoid building/deploying visibly broken systems

50

©2011 Azul Systems, Inc.	 	 	 	 	 	

Monolithic-STW GC Problems

51

One way to deal with Monolithic-STW GC

52

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

18000"

0" 2000" 4000" 6000" 8000" 10000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"

Max=16023.552&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

18000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

53

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

18000"

0" 2000" 4000" 6000" 8000" 10000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"

Max=16023.552&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

18000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

54

55

©2012 Azul Systems, Inc.	 	 	 	 	 	

Another way to cope: “Creative Language”

“Guarantee a worst case of X msec, 99% of the time”

“Mostly” Concurrent, “Mostly” Incremental
Translation: “Will at times exhibit long monolithic stop-
the-world pauses”

“Fairly Consistent”
Translation: “Will sometimes show results well outside
this range”

“Typical pauses in the tens of milliseconds”
Translation: “Some pauses are much longer than tens of
milliseconds”

56

©2012 Azul Systems, Inc.	 	 	 	 	 	

Actually measuring things

(e.g. jHiccup)

57

©2012 Azul Systems, Inc.	 	 	 	 	 	

Incontinuities in Java platform execution

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

0" 200" 400" 600" 800" 1000" 1200" 1400" 1600" 1800"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups"by"Time"Interval"

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=1665.024&

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups"by"Percen@le"Distribu@on"

58

©2011 Azul Systems, Inc.	 	 	 	 	 	

Getting past a monolithic-STW
Garbage Collection world

59

©2011 Azul Systems, Inc.	 	 	 	 	 	

We need to solve the right problems

Scale is artificially limited by responsiveness

Responsiveness must be unlinked from scale:
Heap size, Live Set size, Allocation rate, Mutation rate
Transaction Rate, Concurrent users, Data set size, etc.
Responsiveness must be continually sustainable
Can’t ignore “rare” events

Eliminate all Stop-The-World Fallbacks
At modern server scales, any STW fall back is a failure

60

©2011 Azul Systems, Inc.	 	 	 	 	 	

The things that seem “hard” to do in GC
Robust concurrent marking

References keep changing
Multi-pass marking is sensitive to mutation rate
Weak, Soft, Final references “hard” to deal with concurrently

[Concurrent] Compaction…
It’s not the moving of the objects…
It’s the fixing of all those references that point to them
How do you deal with a mutator looking at a stale reference?
If you can’t, then remapping is a [monolithic] STW operation

Young Generation collection at scale
Young Generation collection is generally monolithic, Stop-The-World
Young generation pauses are only small because heaps are tiny
A 100GB heap will regularly have several GB of live young stuff…

61

©2011 Azul Systems, Inc.	 	 	 	 	 	

The problems that need solving
(areas where the state of the art needs improvement)

Robust Concurrent Marking
In the presence of high mutation and allocation rates
Cover modern runtime semantics (e.g. weak refs, lock deflation)

Compaction that is not monolithic-stop-the-world
E.g. stay responsive while compacting ¼ TB heaps

Must be robust: not just a tactic to delay STW compaction
[current “incremental STW” attempts fall short on robustness]

Young-Gen that is not monolithic-stop-the-world
Stay responsive while promoting multi-GB data spikes
Concurrent or “incremental STW” may both be ok
Surprisingly little work done in this specific area

62

©2011 Azul Systems, Inc.	 	 	 	 	 	

Azul’s “C4” Collector
Continuously Concurrent Compacting Collector

Concurrent guaranteed-single-pass marker
Oblivious to mutation rate
Concurrent ref (weak, soft, final) processing

Concurrent Compactor
Objects moved without stopping mutator
References remapped without stopping mutator
Can relocate entire generation (New, Old) in every GC cycle

Concurrent, compacting old generation

Concurrent, compacting new generation

No stop-the-world fallback
Always compacts, and always does so concurrently

63

©2011 Azul Systems, Inc.	 	 	 	 	 	

 C4 algorithm highlights
Same core mechanism used for both generations

Concurrent Mark-Compact

A Loaded Value Barrier (LVB) is central to the algorithm
Every heap reference is verified as “sane” when loaded
“Non-sane” refs are caught and fixed in a self-healing barrier

Refs that have not yet been “marked through” are caught
Guaranteed single pass concurrent marker

Refs that point to relocated objects are caught
Lazily (and concurrently) remap refs, no hurry
Relocation and remapping are both concurrent

Uses “quick release” to recycle memory
Forwarding information is kept outside of object pages
Physical memory released immediately upon relocation
“Hand-over-hand” compaction without requiring empty memory

64

©2011 Azul Systems, Inc.	 	 	 	 	 	

Benefits

65

©2011 Azul Systems, Inc.	 	 	 	 	 	

Sample responsiveness behavior

๏ SpecJBB + Slow churning 2GB LRU Cache
๏ Live set is ~2.5GB across all measurements
๏ Allocation rate is ~1.2GB/sec across all measurements

66

©2011 Azul Systems, Inc.	 	 	 	 	 	

GC Tuning

67

©2011 Azul Systems, Inc.	 	 	 	 	 	

Java GC tuning is “hard”…
Examples of actual command line GC tuning parameters:

Java -Xmx12g -XX:MaxPermSize=64M -XX:PermSize=32M -XX:MaxNewSize=2g
 -XX:NewSize=1g -XX:SurvivorRatio=128 -XX:+UseParNewGC
 -XX:+UseConcMarkSweepGC -XX:MaxTenuringThreshold=0
 -XX:CMSInitiatingOccupancyFraction=60 -XX:+CMSParallelRemarkEnabled
 -XX:+UseCMSInitiatingOccupancyOnly -XX:ParallelGCThreads=12
 -XX:LargePageSizeInBytes=256m …

Java –Xms8g –Xmx8g –Xmn2g -XX:PermSize=64M -XX:MaxPermSize=256M
-XX:-OmitStackTraceInFastThrow -XX:SurvivorRatio=2 -XX:-UseAdaptiveSizePolicy
-XX:+UseConcMarkSweepGC -XX:+CMSConcurrentMTEnabled
-XX:+CMSParallelRemarkEnabled -XX:+CMSParallelSurvivorRemarkEnabled
-XX:CMSMaxAbortablePrecleanTime=10000 -XX:+UseCMSInitiatingOccupancyOnly
-XX:CMSInitiatingOccupancyFraction=63 -XX:+UseParNewGC –Xnoclassgc …

68

©2011 Azul Systems, Inc.	 	 	 	 	 	

The complete guide to
Zing GC tuning

java -Xmx40g

69

©2011 Azul Systems, Inc.	 	 	 	 	 	

Sustainable Throughput:
The throughput achieved while
safely maintaining service levels

Unsustainable
Throughout

70

©2011 Azul Systems, Inc.	 	 	 	 	 	

Instance capacity test: “Fat Portal”
HotSpot CMS: Peaks at ~ 3GB / 45 concurrent users

* LifeRay portal on JBoss @ 99.9% SLA of 5 second response times

71

©2012 Azul Systems, Inc.	 	 	 	 	 	

Instance capacity test: “Fat Portal”
C4: still smooth @ 800 concurrent users

72

©2012 Azul Systems, Inc.	 	 	 	 	 	

Fun with jHiccup

73

©2012 Azul Systems, Inc.	 	 	 	 	 	

Oracle HotSpot CMS, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=13156.352&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Zing 5, 1GB in an 8GB heap

0"

5"

10"

15"

20"

25"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"

Max=20.384&

0"

5"

10"

15"

20"

25"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

74

©2012 Azul Systems, Inc.	 	 	 	 	 	

Oracle HotSpot CMS, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%"

Max=13156.352&

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

Zing 5, 1GB in an 8GB heap

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&Elapsed&Time&(sec)&

Hiccups&by&Time&Interval&

Max"per"Interval" 99%" 99.90%" 99.99%" Max"

0%" 90%" 99%" 99.9%" 99.99%" 99.999%" 99.9999%"Max=20.384&
0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

Hi
cc
up

&D
ur
a*

on
&(m

se
c)
&

&
&

Percen*le&

Hiccups&by&Percen*le&Distribu*on&

75

©2011 Azul Systems, Inc.	 	 	 	 	 	

Q & A
GC :
G. Tene, B. Iyengar and M. Wolf
C4: The Continuously Concurrent Compacting Collector
In Proceedings of the international symposium on Memory management,
ISMM’11, ACM, pages 79-88

Jones, Richard; Hosking, Antony; Moss, Eliot (25 July 2011).
The Garbage Collection Handbook: The Art of Automatic Memory
Management. CRC Press. ISBN 1420082795.

jHiccup:
http://www.azulsystems.com/dev_resources/jhiccup

76

http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com
http://www.azylsystems.com

