Programming Languages and
Compilers (CS 421)

"

Elsa L Gunter
2112 SC, UIluC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

12/10/12 1

i Axiomatic Semantics

= Also called Floyd-Hoare Logic

= Based on formal logic (first order
predicate calculus)

= Axiomatic Semantics is a logical system
built from axioms and inference rules

= Mainly suited to simple imperative
programming languages

12/10/12 2

‘ Axiomatic Semantics

= Used to formally prove a property (post-
condition) of the state (the values of the
program variables) after the execution
of program, assuming another property
(pre-condition) of the state holds before
execution

12/10/12 3

‘ Axiomatic Semantics

= Goal: Derive statements of form
{P} C{Q}
= P, Q logical statements about state,
P precondition, Q postcondition,
C program

s Example: {x=1}x:=x+1{x=2}

12/10/12 4

’ Axiomatic Semantics

» Approach: For each type of language
statement, give an axiom or inference rule
stating how to derive assertions of form

{P} C{Q}
where C is a statement of that type

= Compose axioms and inference rules to
build proofs for complex programs

12/10/12 5

‘ Axiomatic Semantics

= An expression {P} C {Q} is a partial
correctness statement

= For fotal correctness must also prove
that C terminates (i.e. doesn’t run
forever)
= Written: [P] C [Q]

= Will only consider partial correctness
here

12/10/12 6

i Language

= We will give rules for simple imperative
language

<command>
::= <variable> := <term>
| <command>; ... ;<command>

| if <statement> then <command> else
<command>
| while <statement> do <command>

= Could add more features, like for-loops

12/10/12 7

i Substitution

= Notation: P[e/v] (sometimes P[v <- €])

= Meaning: Replace every vin P by e

= Example:
(x+2) [y-1x]=((y—-1)+2)

12/10/12 8

‘ The Assignment Rule

{P[e/X]} x:=e{P}

Example:
{ ? }x:=y{x=2}

12/10/12 9

‘ The Assignment Rule

{P[e/x]} x := e {P}

Example:

{_=2}x:=y{x=2}

12/10/12 10

’ The Assignment Rule

{P[e/x]} x :=e{P}

Example:

{yF21x=y{x=2

12/10/12 11

‘ The Assignment Rule

{Ple/x]}x:=e{P}

Examples:

y=2tx=y{x=2}
{y=2}x=2{y=x}
x+1=n+1}x=x+1 {x=n+1}

2=2}x:=2{x=2}

12/10/12 12

iThe Assignment Rule — Your Turn

= What is the weakest precondition of
X=x+y{x+y=w-x}?

{ ? }

X =X+y
{x+y=w-x}

12/10/12 13

iThe Assignment Rule — Your Turn

= What is the weakest precondition of
X=x+y{x+y=w-x}?

{x+y)+y=w-(x+y)}

X =X+y
x+y=w-x}

12/10/12 14

ﬂecondition Strengthening

PP {P}C{Q}
{P}C{Q}

= Meaning: If we can show that P
implies P’ (P=>» P’) and we can show
that {P’} C {Q}, then we know that {P}
C {Q}

= P is stronger than P’ means P = P’

12/10/12 15

iprecondition Strengthening

= Examples:
X=3=2Xx<7 {x<7}x:=x+3{x<10}
{x=3}x:=x+3{x<10}

True=22=2 {2=2}x=2{x =2}
{True} x:=2{x =2}

x=n > x+1=n+1 {x+1=n+1} x;=x+1 {x=n+1}
{x=n} x;=x+1 {x=n+1}

12/10/12 16

’ Which Inferences Are Correct?

{Xx>0&x<5}x:=x"x{x<25}
{x=3}x:=x*x{x <25}

{x=3} x:=x*x{x <25}
{X>0&x<5}x:=x*x{x<25}

{X*x<25}x:=x*x{x <25}
{X>0&x<5}x:=x*x{x<25}

12/10/12 17

‘ Which Inferences Are Correct?

{x>0&x<5}x:=x*x{x<25}‘/
{x=3}x:=x*x{x <25}

{x > X 1= X "X {x<25)_

{X*x<25}x:=x*x{x <25} ‘/
{x>0&x<5}x:=x*x{x<25}

12/10/12 18

i Sequencing

{PrC,{Q} {Q}C,{R}
{P}Cy; G2 {R}

= Example:
{z=z&z=Z}x:=z{x=2&2z2=12}
{x=z&z=2z}y:=z{x=z2&y =2}
{z=z&z=2z}x:=z;y:=z{x=z&y=2}

12/10/12 19

i Sequencing

{PrC,{Q} {Q}C,{R}
{P}Cy; C{R}

= Example:
{z=z8&z=zZ}x=2{Xx=2&2=2}
x=z8&2z=2}y.=z{x=2&y=2}
{z=2&z=2Z}x:=z;y:=z{x=z&y =2}

12/10/12 20

‘ Postcondition Weakening

{PI1C{Q} @2>Q
{PyC{Q}

Example:
{z=2&z=2z}x=z;y:=z{x=2&y =2}
(x=z&y=27)> (X=y)
{z=2&z=2z}x=z;y =z{x=y}

12/10/12 21

‘ Rule of Consequence

P3P {P}C{Q} @2Q
{P} C{Q}

= Logically equivalent to the combination of
Precondition Strengthening and
Postcondition Weakening

sUsesP=2>Pand Q=2 Q

12/10/12 22

’ If Then Else

{Pand B} C,{Q} {P and (notB)}C, {Q}
{P} if B then C, else C, {Q}
= Example: Want
{y=a}
if x < 0 then y:= y-x else y:= y+x
{y=a+|x[}

Suffices to show:

(1) {y=a&x<0} y:=y-x {y=a+|x|} and

(4) {y=a¬(x<0)} y:=y+x {y=a+[x|}

12/10/12 23

¥y=a&x<0} y:=y-x {y=a+|x|}

(3) (y=a&x<0)=> y-x=a+|x|
(2) {y-x=a+|x|} y=y-x {y=a+|x[}
(1) {y=a&x<0} y:=y-x {y=a+|x]}

(1) Reduces to (2) and (3) by
Precondition Strengthening

(2) Follows from assignment axiom

(3) Because x<0 = |x| = -x

12/10/12 24

i {y=a¬(x<0)} y:=y+x {y=a+|x|}

(6) (y=a¬(x<0))>(y+x=a+[x|)

() {yrx=a+|x|} y:=y+x {y=a+|x}}
(4) {y=a¬(x<0)} y:=y+x {y=a+|x[}

(4) Reduces to (5) and (6) by
Precondition Strengthening

(5) Follows from assignment axiom

(6) Because not(x<0) =» |x| = x

12/10/12 25

:‘ If then else

(1) {y=a&x<0}y:=y-x{y=a+|x[}
(4) {y=a¬(x<0)}y:=y+x{y=a+|x[}
ly=a;
if x < 0 then y:= y-x else y:= y+Xx
{y=a+|x|}

By the if_then_else rule

12/10/12 26

‘ While

= We need a rule to be able to make
assertions about while loops.

= Inference rule because we can only draw
conclusions if we know something about
the body

= Let’s start with:
{ 2 y ¢ { 2 }
{ ? '} while Bdo C {P}

12/10/12 27

‘ While

= The loop may never be executed, so if
we want P to hold after, it had better
hold before, so let’s try:

{ 2y ¢ { 7?2 1}
(P} while Bdo C {P}

12/10/12 28

’ While

= If all we know is P when we enter the
while loop, then we all we know when
we enter the body is (P and B)

= If we need to know P when we finish
the while loop, we had better know it
when we finish the loop body:

{PandB} C {P}
{P} while B do C {P}

12/10/12 29

‘ While

= We can strengthen the previous rule
because we also know that when the
loop is finished, not B also holds

= Final while rule:
{PandB} C {P}
{P }while B do C {PandnotB }

12/10/12 30

i While

{PandB} C {P}
{P}while B do C {PandnotB}

= P satisfying this rule is called a loop
invariant because it must hold
before and after the each iteration
of the loop

12/10/12 31

i While

= While rule generally needs to be
used together with precondition
strengthening and postcondition
weakening

= There is NO algorithm for
computing the correct P; it requires
intuition and an understanding of
why the program works

12/10/12 32

‘ Example

= Let us prove
{x>=0and x = a}
fact ;= 1;
while x > 0 do (fact ;= fact * x; x ;= x —1)
{fact = al}

12/10/12 33

‘ Example

= We need to find a condition P that is true
both before and after the loop is executed,
and such that

(P and not x > 0) = (fact = al)

12/10/12 34

’ Example

» First attempt:
{a! = fact * (x!)}

= Motivation:
= What we want to compute: a!
= What we have computed: fact

which is the sequential product of a down
through (x + 1)

= What we still need to compute: x!

12/10/12 35

‘ Example

By post-condition weakening suffices to
show

1. {x>=0and x = a}
fact ;= 1;
while x > 0 do (fact := fact * x; x := x -1)
{al = fact * (x!) and not (x > 0)}
and
2. {al=fact* (x!)and not (x> 0) } 2>
{fact = a!}

12/10/12 36

i Problem

2. {a! =fact * (x!) and not (x > 0)} =» {fact = a!}
= Don’t know this if x <0

= Need to know that x = 0 when loop
terminates

= Need a new loop invariant
= Tryadding x>=0
= Then will have x = 0 when loop is done

12/10/12 37

i Example

Second try, combine the two:
P ={a! = fact * (x!) and x >=0}
Again, suffices to show
1. {x>=0and x = a}
fact ;= 1;
while x > 0 do (fact := fact * x; x := x —1)
{P and not x > 0}
and
2. {Pandnotx>0}=> {fact=al}

12/10/12 38

‘ Example

= For 2, we need
{a! = fact * (x!) and x >=0 and not (x > 0)} =
{fact = a!}
But {x >=0 and not (x > 0)} = {x = 0} so
fact * (x!) = fact * (0!) = fact
Therefore

{al =fact * (x!) and x >=0 and not (x > 0)} =
{fact = a!}

12/10/12 39

‘ Example

= For 1, by the sequencing rule it suffices to

show
3. {x>=0and x = a}
fact :=1
{a! = fact * (x!) and x >=0}
And

4. {a! =fact * (x!) and x >=0}
while x > 0 do
(fact :=fact * x; x :=x—1)
{a! = fact * (x!) and x >=0 and not (x > 0)}

12/10/12 40

’ Example

= Suffices to show that
{a! = fact * (x!) and x >= 0}

holds before the while loop is entered and
that if

{(a! =fact * (x!)) and x >= 0 and x > 0}

holds before we execute the body of the
loop, then

{(a! = fact * (x!)) and x >= 0}
holds after we execute the body

12/10/12 41

‘ Example

By the assignment rule, we have
{al=1*(x!) and x >= 0}
fact :=1
{al =fact * (x!) and x >= 0}
Therefore, to show (3), by
precondition strengthening, it suffices
to show

(x>=0andx=a) =2
(@'=17*(x!Yand x>=0)

12/10/12 42

i Example

(x>=0andx=a)=>
(@'=1*(x!andx>=0)
holds because x =a = x! = al

Have that {a! = fact * (x!) and x >= 0}
holds at the start of the while loop

12/10/12 43

i Example

To show (4):

{al = fact * (x!) and x >=0}

while x > 0 do

(fact :=fact * x; x :== x —1)

{a! = fact * (x!) and x >=0 and not (x > 0)}
we need to show that

{(a! = fact * (x!)) and x >= 0}

is a loop invariant

12/10/12 44

‘ Example

We need to show:

{(@! = fact * (x!)) and x >= 0 and x > 0}
(fact=fact*x;x:=x-1)
{(a! = fact * (x!)) and x >= 0}

We will use assignment rule,
sequencing rule and precondition
strengthening

12/10/12 45

‘ Example

By the assignment rule, we have
{(a! = fact * ((x-1)!)) and x — 1 >= 0}
X:=x-1
{(a! = fact * (x!)) and x >= 0}
By the sequencing rule, it suffices to show
{(@! = fact * (x!)) and x >= 0 and x > 0}
fact = fact * x
{(@' =fact * ((x-1)")) and x — 1 >= 0}

12/10/12 46

’ Example

By the assignment rule, we have that
{(a! = (fact * x) * ((x-1)!)) and x — 1 >= 0}
fact = fact * x

{(@' =fact * ((x-1)")) and x — 1 >= 0}
By Precondition strengthening, it suffices
to show that
((@'=fact* (x!))and x>=0and x> 0) 2>
((a@! = (fact * x) * ((x-1)")) and x — 1 >= 0)

12/10/12 47

‘ Example

However
fact* x * (x — 1)! = fact * x
and x>0)=2>x-1>=0
since x is an integer,so
{(@'=fact* (x!)) and x>=0and x > 0} =
{(a! = (fact * x) * ((x-1)!)) and x — 1 >= 0}

12/10/12 48

i Example

Therefore, by precondition strengthening
{(a' = fact * (x!)) and x >= 0 and x > 0}
fact = fact * x
{(a! =fact * ((x-1)!)) and x — 1 >= 0}

This finishes the proof

12/10/12

49

