Programming Languages and
Compilers (CS 421)

»

1
Elsa L Gunter
2112 SC, UIluC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

11/29/12

i Untyped A-Calculus

= Only three kinds of expressions:
= Variables: x,y, z, w, ...
= Abstraction: A x. e
(Function creation)
= Application: e, e,

11/29/12

i How to Represent (Free) Data Structures
(First Pass - Enumeration Types)

= Suppose T is a type with n constructors:
C,,...,C, (no arguments)

= Represent each term as an abstraction:

mlet G — AX ... Xy X

= Think: you give me what to return in
each case (think match statement) and
I'll return the case for the ith
constructor

11/29/12

i How to Represent Booleans

= bool = True | False
= True > A X AX. X3 =, AX.AY. X
= False = A X AX5. X5 =, AX.AY.Y

o

= Notation
= Will write
AXq . Xy €fOr A Xy .o AX,. €
e;e,..e, for(...(e;e,)...e,)

11/29/12

i Functions over Enumeration Types

= Write a "match” function
= match e with C; -> x,

[...
| C,-> X,
= AX{ ... X, € €X.. X,

= Think: give me what to do in each case and
give me a case, and I'll apply that case

11/29/12

i Functions over Enumeration Types

= typer =C/|...|C,

= match e with C, -> x4
[...

| Cn => Xn

= matcht = A Xy ... X, €. € X;y...X,,

= € = expression (single constructor)
X; is returned if e = C

11/29/12

i match for Booleans

= bool = True | False
mTrue — A X;X. Xy =, AXY.X
= False = A Xy X, X, =, AXY.Y

a

= match,,, = ?

11/29/12 7

i match for Booleans

= bool = True | False
mTrue = A X;X. Xy =, AXY.X
= False = A Xy X. X; =, AXY.Y
= match,,,; = A X; X; €. € Xy X,

=, A\Xyb.bxy

11/29/12 8

‘ How to Write Functions over Booleans

= if b then x, else x, —
= if_then_else b x; X, = b x; %,
= if_then_else=AbXx; X, .b X X

11/29/12 9

‘ How to Write Functions over Booleans

= Alternately:

= if bthenx, else x, =
match b with True -> x, | False -> x, —
matchpy, X; X; b =
(AXy X b.bXy X)Xy X b=bXx; %,

s if then_else
= A b x; X,. (match,, X; X, b)
=AbX X MXy X3 b DXy X)Xy X, b
=AbX; X5. b XX,

11/29/12 10

’ Example:

not b

= match b with True -> False | False -> True
— (match,,,) False True b

=(AXxy X b.bx;x)(Axy.y)(Axy.x)b
=b(Mxy.y)AXy.X)

snot=Ab.b(AXxYy.y)AXYy.X)
= Try and, or

11/29/12 11

‘ and or

11/29/12 12

i How to Represent (Free) Data Structures
(Second Pass - Union Types)

= Suppose T is a type with n constructors:
typer =Gty byl 1[Gty o b,
= Represent each term as an abstraction:

u q tl‘l x tl], e}\. Xl Xn. XI tl‘l tl],

u CI—>7\. tl.l tl], Xl Xn . XI tll e tl],

= Think: you need to give each constructor
its arguments fisrt

11/29/12

i How to Represent Pairs

= Pair has one constructor (comma) that takes
two arguments

= type (ao,p)pair = (,) o B
m(@a,b)-->Ax.xab
=(_,_)->hrabx.xab

11/29/12 14

i Functions over Union Types

= Write a "match” function

= match e with C, vy, ... Y1 -> f1 Y1 oo Yo
| ...

| C.n Y1 Yon = fn Y1 Y

s matcht — Af; .. f,e.ef,..f,

= Think: give me a function for each case and
give me a case, and I'll apply that case to

the appropriate fucntion with the data in that
case

11/29/12

i Functions over Pairs

= match,, _Afp.pf

= fst p = match p with (x,y) -> x
= fst — A p. match,,;, (A X Y. X)
=(Mfp.pH(AXY.X) =Ap.p(AXY.X)

s snd =Ap.p(AXY.Yy)

11/29/12 16

i How to Represent (Free) Data Structures
(Third Pass - Recursive Types)

= Suppose T is a type with n constructors:
typer =Gty byl 1G by o G,
Suppose t;,: t (ie. is recursive)

= In place of a value £, have afunction to compute
the recursive value r X, ... X,

Gl Mty = AXg o X X By (T Xq e X)) o G

8 G My Lyl Xq o X X By e (T Xq e X)) e B

11/29/12

i How to Represent Natural Numbers

=nat=Sucnat| 0
aSuc =rnfx f(nfx)
aSucn=xrfx f(nfx)
-6=7\fx.x

= Such representation called
Church Numerals

11/29/12 18

i Some Church Numerals

sSucO0=(nfx.f(nfx)) (nfx. x)-->
AMx (O fx x)fx)-—->
M (WX X)X)-->Afx fXx

Apply a function to its argument once

11/29/12 19

i Some Church Numerals

= Suc(Suc 0) = (A nfx. f(nfx))(Suc0)-->
(Anfx.f(nfx) (Mfx. fx)->
AMx fF((\fx fx)fx))-—->
AMX F((MX fX)X)-—->Afx f(fx)
Apply a function twice

In general n = A fx. f (... (Fx)...) with n
applications of f

11/29/12 20

‘ Primitive Recursive Functions

= Write a “fold” function
= foldf; ... f, = matche
With C; ¥y oo Yo => F1 Y1 o Vi
[...
| Giyy o By oYin => fryg o (fold fy o frg) e
[...
| Cn Y1 Yo => f:n Y1+ Ymn

» foldr — Af; .. f e ef..f,

= Match in non recursive case a degenerate version
of fold

11/29/12 21

i Primitive Recursion over Nat

= fold fz n=
= match nwith0 -> z
. | Suc m -> f (fold f z m)

sfold=Afzn. nfz

= is_zero n = fold (A r. False) True n
= (M fx. fnx) (A r. False) True

= ((Ar. False) ") True

= =if n = 0 then True else False

11/29/12 22

!-’ Adding Church Numerals

N=afx.f'x and m=Afx. fmx

sn+m=Axfx fOmx
=Afx.fr(fmx)=rfx.nf(mfx)

st=anmfx.nf(mfx)

= Subtraction is harder

11/29/12 23

i Multiplying Church Numerals

an=Afx.f'x and m=Afx. fmx

(frxmyx =nfx. (fMnx

¥=Anmfx. n(mf)x

11/29/12 24

’ Predecessor

= let pred_aux n =

match n with 0 -> (0,0)

| Suc m

-> (Suc(fst(pred_aux m)), fst(pred_aux m)
= fold (A r. (Suc(fst r), fstr)) (0,0) n

m pred = A n. snd (pred_aux n) n =
A n. snd (fold (A r.(Suc(fst r), fst r)) (0,0) n)

11/29/12 25

i Recursion

= Want a A-term Y such that for all term
R we have

= YR=R(YR)
= Y needs to have replication to
“remember” a copy of R

Y =2y, (AX y(x X)) (A X y(XXx))
= YR = (AX. R(X X)) (AX. R(X X))

=R ((A x. R(x x)) (A x. R(x x)))
= Notice: Requires lazy evaluation

11/29/12 26

i Factorial

mletF=Afn.ifn=0thenlelsen*f(n-1)
YF3=F(YF)3

=if3=0thenlelse3 * ((YF)(3-1))
=3*(YF)2=3*(FYF)?2)
=3*(f2=0then1lelse2* (YF)(2-1))
=3*Q*(YF1)=3*Q2*(FYF)1)=..
=3*2*1*(if 0 =0then 1 else 0*(Y F)(0 -1))
=3*%2*1*1=6

11/29/12 27

‘ Y in OCaml

#letrecyf=f(yf);;
valy : ('a->'a) -> 'a = <fun>
let mk_fact =
funfn->ifn=0then 1else n*f(n-1);;
val mk_fact : (int -> int) -> int -> int = <fun>
y mk_fact;;
Stack overflow during evaluation (looping
recursion?).

11/29/12 28

i Eager Eval Y in Ocaml

#letrecyfx=f(yf)x;;

valy:((la->'b)->'a->'b)->'a->'b =
<fun>

y mk_fact;;

- rint -> int = <fun>

#y mk_fact 5;;

-1int =120

= Use recursion to get recursion

11/29/12 29

i Some Other Combinators

= For your general exposure

sl=AX.X

s K=AX AY. X

s K« =AX. AYy. Yy

s S=AX.AY.AZ.XZ(Y2)

11/29/12 30

