Programming Languages and
Compilers (CS 421)

I Elsa L Gunter
2112 SC, UIluC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

11/8/12 1

i Semantics

= Expresses the meaning of syntax
= Static semantics

= Meaning based only on the form of the
expression without executing it

= Usually restricted to type checking / type
inference

11/8/12 2

‘ Dynamic semantics

= Method of describing meaning of
executing a program
= Several different types:
= Operational Semantics
= Axiomatic Semantics
= Denotational Semantics

11/8/12 3

‘ Dynamic Semantics

= Different languages better suited
to different types of semantics

= Different types of semantics
serve different purposes

11/8/12 4

’ Operational Semantics

= Start with a simple notion of machine

= Describe how to execute (implement)
programs of language on virtual machine, by
describing how to execute each program
statement (ie, following the structure of the
program)

= Meaning of program is how its execution
changes the state of the machine

= Useful as basis for implementations

11/8/12 5

‘ Axiomatic Semantics

= Also called Floyd-Hoare Logic

= Based on formal logic (first order
predicate calculus)

= Axiomatic Semantics is a logical system
built from axioms and inference rules

= Mainly suited to simple imperative
programming languages

11/8/12 6

i Axiomatic Semantics

= Used to formally prove a property
(post-condition) of the state (the
values of the program variables) after
the execution of program, assumin
another property (pre-condition) of the
state before execution

= Written :

{Precondition} Program {Postcondition}

= Source of idea of loop invariant

11/8/12 7

i Denotational Semantics

= Construct a function s assigning a
mathematical meaning to each program
construct

= Lambda calculus often used as the range
of the meaning function

= Meaning function is compositional:
meaning of construct built from meaning
of parts

= Useful for proving properties of programs

11/8/12 8

‘ Natural Semantics

= Aka Structural Operational Semantics, aka
“Big Step Semantics”

= Provide value for a program by rules and
derivations, similar to type derivations

= Rule conclusions look like
C,m{m’
or
(E,m){v

11/8/12 9

‘ Simple Imperative Programming Language

» I € Identifiers
s N € Numerals
= B::=true | false | B& B| Bor B| not B
| E<E|E=E
wEx=N|I|E+E|E*E|E-E|-E
s Ci=skip| GC|I::=E
| if Bthen Celse Cfi | while Bdo Cod

11/8/12 10

’ Natural Semantics of Atomic Expressions

= Identifiers: (I,m) | m(1)

= Numerals are values: (N,m) | N

= Booleans: (true,m) | true
(false ,m) | false

11/8/12 11

‘ Booleans:

(B, m) | false (B,m)| true (B, m)| b

(B& B, m) | false B&B,m)| b

(B, m) | true (B, m)| false (B, m)| b

(Bor B, m) || true (BorB, m)| b

(B, m) || true
(not B, m) || false

(B, m) | false
(not B, m) || true

11/8/12 12

i Relations

(EmiU (EEmV U~V=b
(E~E,m | b

= By U ~ V = b, we mean does (the meaning
of) the relation ~ hold on the meaning of U
and V

= May be specified by a mathematical
expression/equation or rules matching U and
4

11/8/12 13

i Arithmetic Expressions

(EmiU (EEmlV UopV=N
(EopE, m | N
where N is the specified value for U op V

11/8/12 14

‘ Commands

Skip: (skip, m) | m

Assignment: (Em)| V
(L:=Em) | mI<--V]

Sequencing: (Cm) | m” (C,m) | m”
(GC,m) | m”

11/8/12 15

‘ If Then Else Command

(Bm) | true (Cm) | m’
(if Bthen Celse C’fi, m) | m’

(Bm) | false (C,m) | m’
(if Bthen Celse C’fi, m) | m’

11/8/12 16

’ While Command

(B,m) | false
(while Bdo Cod, m) | m

(B,m)|true (Cm){m’ (while Bdo Cod, m”)|{ m”

(while Bdo Cod, m) | m”

11/8/12 17

‘ Example: If Then Else Rule

(if x >5theny:=2 + 3 elsey:=3 + 4fi,
{x->73 17

11/8/12 18

iExampIe: If Then Else Rule

(x>5,{x->7)?
(if x >5theny:=2 + 3 elsey:=3 + 4fi,
{x->71 1 ?

11/8/12 19

i Example: Arith Relation

?>7?=7

(XAx->71? (5Ax->73){?
(x> 5,{x->7H|?

(fx>5theny:=2 + 3elsey:=3 + 4fj,
{x->7p 1|7

11/8/12

20

i Example: Identifier(s)

7 > 5 = true
XA=>7DN7 (5{X->71)15
x>5,{x->7}|?
(if x > 5theny:=2 + 3 else y:=3 + 4fj,
x->7)17

11/8/12 21

i Example: Arith Relation

7 > 5 =true
XAX->73IN7 (5{x->7})I5
(x > 5, {x-> 7})|true

(ifx>5theny:=2 + 3elsey:=3 +4fi,
x->71)17

11/8/12

22

i Example: If Then Else Rule

7 > 5 =true

AE>7DN7 - (5 {x->7115 (yi=2+3,{x>7}
(x> 5, {x->7})|true 17?
(if x >5theny:=2 + 3 elsey:=3 + 4fi,
{x->7p) 17

11/8/12 23

i Example: Assignment

7 > 5 = true (243, {x->7})|?
xAX->7DN7 (5x->715 (yi=2+3,{x>7}
(x> 5, {x->7})|true 17?

(fx>5theny:=2 + 3elsey:=3 + 4fj,
{x->7p 1|7

11/8/12

24

i Example: Arith Op
2+2=7?

2x->7D1? G {x->7H |?

7 > 5 =true (2+3, {x->7H|?

XAX=>7W7 (5{x->71{5 (y:i=2+ 3, {x-> 7}
(x> 5, {x->7})|true 1?
(if x >5theny:=2 + 3 else y:=3 + 4fi,
x->7117

11/8/12 25

i Example: Numerals
2+3=5

Ax->7112 (3 {x->7}) I3

7 > 5 =true (243, {x->7}){?

XAX=>77 (5{x->7}5 (yi=2+3,{x->7}
(x> 5, {x-> 7})|true 7
(if x> 5theny:=2 + 3 else y:=3 + 4fi,
{x->7317?

11/8/12 26

‘ Example: Arith Op
2+3=5

2x>7D12 (3 {x->7}) I3

7 > 5 =true (243, {x->7})I5

XA=>7DN7 (5{X->71)15 (yi=2+ 3, {x>7}
(x> 5, {x-> 7})|true J?
(f x >5theny:=2 + 3 elsey:=3 + 4fi,
x->7)1 ?

11/8/12 27

‘ Example: Assignment
2+3=5

QAx->712 (3 {x->7}) 13

7 >5 =true (243, {x->7})I5

AE>7DN7 (5{x->7H) 15 (yi=2+3,{x>7}
(x > 5, {x->7})|true I {x->7, y->5}
(if x >5theny:=2 + 3 elsey:=3 + 4fi,
{x->7})1?

11/8/12 28

’ Example: If Then Else Rule

2+3=5
2Ax->7PI2 B{x->7}) {3

7 > 5 =true (243, {x->7})|5

AE>7DN7 - (5 {x->7115 (yi=2+3,{x>7}
(x > 5, {x-> 7}){true | {x->7, y->5}
(if x >5theny:=2 + 3 elsey:=3 + 4fi,

{x->73) 1| {x>7,y->5}

11/8/12 29

‘ Let in Command

(Em) yv (GmlI<-v]) | m’
(letI=EinC m)| m”

Where m”(y) = m’(y) for y= I and
m”(I) = m (1) if m(I) is defined,
and m” (1) is undefined otherwise

11/8/12 30

i Example

(X{x->5H) I 5 B{x>5}) {3

(x+3,{x->5}) | 8

(5{x>17}) |5 (X:=x+3,{x->5}) | {x->8}

(let x =5in (x:=x+3), {x->17}) | ?

11/8/12 31

i Example

(XAx->5}) § 5 B{x>5) {3

(x+3,{x->5}) | 8
(5{x->17}) | 5 (x:=x+3,{x->5}) | {x->8}
(let x = 5in (x:=x+3), {x -> 17}) | {x->17}

11/8/12 32

‘ Comment

= Simple Imperative Programming Language
introduces variables implicitly through
assignment

= The let-in command introduces scoped
variables explictly

= Clash of constructs apparent in awkward
semantics

11/8/12 33

‘ Interpretation Versus Compilation

= A compiler from language L1 to language
L2 is a program that takes an L1 program
and for each piece of code in L1 generates a
piece of code in L2 of same meaning

= An interpreter of L1 in L2 is an L2 program
that executes the meaning of a given L
program

= Compiler would examine the body of a loop
once; an interpreter would examine it every
time the loop was executed

11/8/12 34

’ Interpreter

= An Interpreter represents the operational
semantics of a language L1 (source
language) in the language of implementation
L2 (target language)

= Built incrementally
= Start with literals
= Variables
= Primitive operations
= Evaluation of expressions
= Evaluation of commands/declarations

11/8/12 35

Interpreter

= Takes abstract syntax trees as input
= In simple cases could be just strings
= One procedure for each syntactic category
(nonterminal)
= eg one for expressions, another for commands
= If Natural semantics used, tells how to
compute final value from code
= If Transition semantics used, tells how to
compute next “state”
= To get final value, put in a loop

11/8/12 36

i Natural Semantics Example

= compute_exp (Var(v), m) = look_up vm
= compute_exp (Int(n), _) = Num (n)
= compute_com(IfExp(b,c1,c2),m) =
if compute_exp (b,m) = Bool(true)
then compute_com (c1,m)
else compute_com (c2,m)

11/8/12

37

i Natural Semantics Example

= compute_com(While(b,c), m) =
if compute_exp (b,m) = Bool(false)
then m
else compute_com
(While(b,c), compute_com(c,m))

= May fail to terminate - exceed stack limits
= Returns no useful information then

11/8/12 38

