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Recursive Descent Parsing 

  Recursive descent parsers are a class of 
parsers derived fairly directly from BNF 
grammars 

  A recursive descent parser traces out a 
parse tree in top-down order, 
corresponding to a left-most derivation 
(LL - left-to-right scanning, leftmost 
derivation) 
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Recursive Descent Parsing 

  Each nonterminal in the grammar has a 
subprogram associated with it; the 
subprogram parses all phrases that the 
nonterminal can generate 

  Each nonterminal in right-hand side of a rule 
corresponds  to a recursive call to the 
associated subprogram 
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Recursive Descent Parsing 

  Each subprogram must be able to decide 
how to begin parsing by looking at the left-
most character in the string to be parsed 
  May do so directly, or indirectly by calling 

another parsing subprogram  

  Recursive descent parsers, like other top-
down parsers, cannot be built from left-
recursive grammars 
  Sometimes can modify grammar to suit 
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Sample Grammar 

<expr> ::= <term> | <term> + <expr> 
             | <term> - <expr> 

<term> ::= <factor> | <factor> * <term> 
             | <factor> / <term> 

<factor> ::= <id> | ( <expr> ) 
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Tokens as OCaml Types 

  +  -  *  /  (  )  <id> 
  Becomes an OCaml datatype 
type token = 
     Id_token of string 
   | Left_parenthesis | Right_parenthesis 
   | Times_token | Divide_token 
   | Plus_token | Minus_token 
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Parse Trees as Datatypes 

<expr> ::= <term> | <term> + <expr> 
             | <term> - <expr> 

type expr = 
    Term_as_Expr of term 
  | Plus_Expr of (term * expr) 
  | Minus_Expr of (term * expr) 
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Parse Trees as Datatypes 

<term> ::= <factor> | <factor> * 
<term> 

                | <factor> / <term> 

and term = 
    Factor_as_Term of factor  
  | Mult_Term of (factor * term) 
  | Div_Term of (factor * term) 
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Parse Trees as Datatypes 

<factor> ::= <id> | ( <expr> ) 

and factor = 
    Id_as_Factor of string 
  | Parenthesized_Expr_as_Factor of expr 
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Parsing Lists of Tokens 

  Will create three mutually recursive 
functions: 
  expr : token list -> (expr * token list) 
  term : token list -> (term * token list) 
  factor : token list -> (factor * token list) 

  Each parses what it can and gives back 
parse and remaining tokens 
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<expr> ::= <term> [( + | - ) <expr> ] 
 let rec expr tokens = 

    (match term tokens 

      with ( term_parse , tokens_after_term) -> 

        (match tokens_after_term 

          with( Plus_token  :: tokens_after_plus) -> 

Parsing an Expression 
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Parsing a Plus Expression 

<expr> ::= <term> + <expr>   

       (match expr tokens_after_plus 

      with ( expr_parse  , tokens_after_expr) -> 

  ( Plus_Expr  ( term_parse  ,  expr_parse ), 

    tokens_after_expr)) 
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<expr> ::= <term> + <expr>   

 (match expr tokens_after_plus 

      with ( expr_parse  , tokens_after_expr) -> 

  ( Plus_Expr  ( term_parse  ,  expr_parse ), 

    tokens_after_expr)) 

Parsing a Plus Expression 
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Building Plus Expression Parse Tree 

<expr> ::= <term> + <expr>   

 (match expr tokens_after_plus 

      with ( expr_parse  , tokens_after_expr) -> 

  ( Plus_Expr  ( term_parse  ,  expr_parse ), 

    tokens_after_expr)) 



11/6/12 19 

<expr> ::=  <term> - <expr>   

      | ( Minus_token  :: tokens_after_minus) -> 

         (match expr tokens_after_minus 

       with ( expr_parse  , tokens_after_expr) -> 

  ( Minus_Expr  ( term_parse  ,  expr_parse  ), 

    tokens_after_expr)) 

Parsing a Minus Expression 
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Parsing a Minus Expression 

<expr> ::=  <term> - <expr>   

      | ( Minus_token  :: tokens_after_minus) -> 

         (match expr tokens_after_minus 

       with ( expr_parse  , tokens_after_expr) -> 

  ( Minus_Expr  ( term_parse  ,  expr_parse  ), 

    tokens_after_expr)) 
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<expr> ::=  <term> 

 | _ -> (Term_as_Expr  term_parse  , 
tokens_after_term))) 

  Code for  term  is same except for 
replacing addition with multiplication 
and subtraction with division 

Parsing an Expression as a Term 
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Parsing Factor as Id 

<factor> ::= <id>  

and factor  tokens = 
 (match tokens 
  with (Id_token id_name :: tokens_after_id) =  
   ( Id_as_Factor  id_name, tokens_after_id) 
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  <factor> ::= ( <expr> ) 

 | factor ( Left_parenthesis  :: tokens) = 

     (match expr tokens 

      with ( expr_parse , tokens_after_expr) -> 

Parsing Factor as Parenthesized Expression 
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<factor> ::=  ( <expr> ) 

(match tokens_after_expr 

with Right_parenthesis :: tokens_after_rparen -> 

 ( Parenthesized_Expr_as_Factor   expr_parse  ,  
tokens_after_rparen) 

Parsing Factor as Parenthesized Expression 
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Error Cases 

  What if no matching right parenthesis? 

    | _ -> raise (Failure "No matching 
rparen") )) 

  What if no leading id or left parenthesis? 
 | _ -> raise (Failure "No id or lparen" ));; 
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( a + b ) * c - d 

expr [Left_parenthesis; Id_token "a”; 
Plus_token; Id_token "b”; 
Right_parenthesis; Times_token; 
Id_token "c”; Minus_token;       
Id_token "d"];; 
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( a + b ) * c - d 

- : expr * token list = 
(Minus_Expr 
  (Mult_Term 
    (Parenthesized_Expr_as_Factor 
      (Plus_Expr 
        (Factor_as_Term (Id_as_Factor "a"), 
         Term_as_Expr (Factor_as_Term 

(Id_as_Factor "b")))), 
     Factor_as_Term (Id_as_Factor "c")), 
   Term_as_Expr (Factor_as_Term (Id_as_Factor 

"d"))), 
 []) 
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( a + b ) * c – d 

                   <expr> 

              <term>       -      <expr> 

             <factor>   *    <term>      <term> 

       (     <expr>     )      <factor>   <factor> 

     <term>  +  <expr>    <id>          <id> 

    <factor>     <term>       c               d 

        <id>       <factor> 

          a            <id> 

                           b 
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a + b * c – d 

# expr [Id_token "a”; Plus_token; Id_token "b”;      
Times_token; Id_token "c”; Minus_token; 
      Id_token "d"];; 

- : expr * token list = 
(Plus_Expr 
  (Factor_as_Term (Id_as_Factor "a"), 
   Minus_Expr 
    (Mult_Term (Id_as_Factor "b", Factor_as_Term 

(Id_as_Factor "c")), 
     Term_as_Expr (Factor_as_Term (Id_as_Factor 

"d")))), 
 []) 
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a + b * c – d 

                   <expr> 

 <term>           +                <expr> 

<factor>                < term>     -    <expr> 

   <id>          <factor>  *  <term>  <term> 

      a               <id>       <factor>  <factor> 

                         b             <id>       <id> 

                                           c            d 
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( a + b * c - d 

# expr [Left_parenthesis; Id_token "a”; 
Plus_token; Id_token "b”; Times_token; 
Id_token "c”; Minus_token; Id_token "d"];; 

 Exception: Failure "No matching rparen".  

Can’t parse because it was expecting a  
right parenthesis but it got to the end 
without finding one 
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a + b ) * c - d *) 

expr [Id_token "a”; Plus_token; Id_token "b”; 
Right_parenthesis; Times_token; Id_token "c”; 
Minus_token; Id_token "d"];; 

- : expr * token list = 
(Plus_Expr 
  (Factor_as_Term (Id_as_Factor "a"), 
   Term_as_Expr (Factor_as_Term (Id_as_Factor 

"b"))), 
 [Right_parenthesis; Times_token; Id_token "c"; 

Minus_token; Id_token "d"]) 



Parsing Whole String 

  Q: How to guarantee whole string parses? 
  A: Check returned tokens empty 

let parse tokens  = 

    match expr tokens  

     with (expr_parse, []) -> expr_parse 
     | _ -> raise (Failure “No parse");; 

  Fixes <expr> as start symbol 
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Streams in Place of Lists 

  More realistically, we don't want to create 
the entire list of tokens before we can start 
parsing 

  We want to generate one token at a time 
and use it to make one step in parsing 

  Will use (token * (unit -> token)) or (token * 
(unit -> token option))  

    in place of  token list 
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Problems for Recursive-Descent Parsing 

  Left Recursion: 
  A ::= Aw 

   translates to a subroutine that loops forever 
  Indirect Left Recursion: 
  A ::= Bw 
  B ::= Av 
 causes the same problem 
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Problems for Recursive-Descent Parsing 

  Parser must always be able to choose 
the next action based only only the 
very next token 

  Pairwise Disjointedness Test: Can we 
always determine which rule (in the 
non-extended BNF) to choose based 
on just the first token 
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Pairwise Disjointedness Test 

  For each rule 
A ::= y 

Calculate 
FIRST (y) = 
     {a | y =>* aw} ∪ {ε | if y =>* ε} 
  For each pair of rules  A ::= y  and A ::= 

z,  require FIRST(y) ∩ FIRST(z) = { } 
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Example 

Grammar:  
<S> ::= <A> a <B>  b 
<A> ::= <A> b | b 
<B> ::= a <B> | a 

FIRST (<A> b) = {b} 
FIRST (b) = {b} 
Rules for <A> not pairwise disjoint 
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Eliminating Left Recursion 

  Rewrite grammar to shift left recursion to 
right recursion  
  Changes associativity 

  Given  
<expr> ::= <expr> + <term> and  
<expr> ::= <term> 
  Add new non-terminal <e> and replace 

above rules with 
<expr> ::= <term><e> 
<e> ::= + <term><e> | ε  
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Factoring Grammar 

  Test too strong: Can’t handle 
 <expr> ::= <term> [ ( + | - ) <expr> ] 

  Answer: Add new non-terminal and replace 
above rules by 
<expr> ::= <term><e> 
<e> ::= + <term><e> 
<e> ::= - <term><e> 
<e> ::= ε  

  You are delaying the decision point 
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Example 

Both <A> and <B> 
have problems: 

<S> ::= <A> a <B> b 
<A> ::= <A> b | b 
<B> ::= a <B> | a 

Transform grammar 
to: 

<S> ::= <A> a <B> b  
<A> ::-= b<A1> 
<A1> :: b<A1> |  ε 
<B> ::= a<B1> 
<B1> ::= a<B1> | ε 
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Semantics 

  Expresses the meaning of syntax 
  Static semantics 

  Meaning based only on the form of the 
expression without executing it 

  Usually restricted to type checking / type 
inference 
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Dynamic semantics 

  Method of describing meaning of 
executing a program 

  Several different types: 
 Operational Semantics 
 Axiomatic Semantics 
 Denotational Semantics 
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Dynamic Semantics 

 Different languages better suited 
to different types of semantics 

 Different types of semantics 
serve different purposes 
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Operational Semantics 

  Start with a simple notion of machine 

  Describe how to execute (implement) 
programs of language on virtual machine, by 
describing how to execute each program 
statement (ie, following the structure of the 
program) 

  Meaning of program is how its execution 
changes the state of the machine 

  Useful as basis for implementations 
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Axiomatic Semantics 

  Also called Floyd-Hoare Logic 
  Based on formal logic (first order 

predicate calculus) 
  Axiomatic Semantics is a logical system 

built from axioms and inference rules 
  Mainly suited to simple imperative 

programming languages 
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Axiomatic Semantics 

  Used to formally prove a property 
(post-condition) of the state (the 
values of the program variables) after 
the execution of program, assuming 
another property (pre-condition) of the 
state before execution 

  Written : 
{Precondition} Program {Postcondition} 

  Source of idea of loop invariant  
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Denotational Semantics 

  Construct a function M assigning a 
mathematical meaning to each program 
construct 

  Lambda calculus often used as the range 
of the meaning function 

  Meaning function is compositional: 
meaning of construct built from meaning 
of parts 

  Useful for proving properties of programs 
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Natural Semantics 

  Aka Structural Operational Semantics, aka 
“Big Step Semantics” 

  Provide value for a program by rules and 
derivations, similar to type derivations 

  Rule conclusions look like  
(C, m) ⇓ m’ 

or 
(E, m) ⇓ v 


