
11/6/12 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

11/6/12 2

Recursive Descent Parsing

  Recursive descent parsers are a class of
parsers derived fairly directly from BNF
grammars

  A recursive descent parser traces out a
parse tree in top-down order,
corresponding to a left-most derivation
(LL - left-to-right scanning, leftmost
derivation)

11/6/12 3

Recursive Descent Parsing

  Each nonterminal in the grammar has a
subprogram associated with it; the
subprogram parses all phrases that the
nonterminal can generate

  Each nonterminal in right-hand side of a rule
corresponds to a recursive call to the
associated subprogram

11/6/12 4

Recursive Descent Parsing

  Each subprogram must be able to decide
how to begin parsing by looking at the left-
most character in the string to be parsed
  May do so directly, or indirectly by calling

another parsing subprogram

  Recursive descent parsers, like other top-
down parsers, cannot be built from left-
recursive grammars
  Sometimes can modify grammar to suit

11/6/12 5

Sample Grammar

<expr> ::= <term> | <term> + <expr>
 | <term> - <expr>

<term> ::= <factor> | <factor> * <term>
 | <factor> / <term>

<factor> ::= <id> | (<expr>)

11/6/12 6

Tokens as OCaml Types

  + - * / () <id>
  Becomes an OCaml datatype
type token =
 Id_token of string
 | Left_parenthesis | Right_parenthesis
 | Times_token | Divide_token
 | Plus_token | Minus_token

11/6/12 7

Parse Trees as Datatypes

<expr> ::= <term> | <term> + <expr>
 | <term> - <expr>

type expr =
 Term_as_Expr of term
 | Plus_Expr of (term * expr)
 | Minus_Expr of (term * expr)

11/6/12 8

Parse Trees as Datatypes

<term> ::= <factor> | <factor> *
<term>

 | <factor> / <term>

and term =
 Factor_as_Term of factor
 | Mult_Term of (factor * term)
 | Div_Term of (factor * term)

11/6/12 9

Parse Trees as Datatypes

<factor> ::= <id> | (<expr>)

and factor =
 Id_as_Factor of string
 | Parenthesized_Expr_as_Factor of expr

11/6/12 10

Parsing Lists of Tokens

  Will create three mutually recursive
functions:
  expr : token list -> (expr * token list)
  term : token list -> (term * token list)
  factor : token list -> (factor * token list)

  Each parses what it can and gives back
parse and remaining tokens

11/6/12 11

<expr> ::= <term> [(+ | -) <expr>]
 let rec expr tokens =

 (match term tokens

 with (term_parse , tokens_after_term) ->

 (match tokens_after_term

 with(Plus_token :: tokens_after_plus) ->

Parsing an Expression

11/6/12 12

<expr> ::= <term> [(+ | -) <expr>]

 let rec expr tokens =

 (match term tokens

 with (term_parse , tokens_after_term) ->

 (match tokens_after_term

 with (Plus_token :: tokens_after_plus) ->

Parsing an Expression

11/6/12 13

<expr> ::= <term> [(+ | -) <expr>]

 let rec expr tokens =

 (match term tokens

 with (term_parse , tokens_after_term) ->

 (match tokens_after_term

 with (Plus_token :: tokens_after_plus) ->

Parsing a Plus Expression

11/6/12 14

<expr> ::= <term> [(+ | -) <expr>]

 let rec expr tokens =

 (match term tokens

 with (term_parse , tokens_after_term) ->

 (match tokens_after_term

 with (Plus_token :: tokens_after_plus) ->

Parsing a Plus Expression

11/6/12 15

<expr> ::= <term> [(+ | -) <expr>]

 let rec expr tokens =

 (match term tokens

 with (term_parse , tokens_after_term) ->

 (match tokens_after_term

 with (Plus_token :: tokens_after_plus) ->

Parsing a Plus Expression

11/6/12 16

Parsing a Plus Expression

<expr> ::= <term> + <expr>

 (match expr tokens_after_plus

 with (expr_parse , tokens_after_expr) ->

 (Plus_Expr (term_parse , expr_parse),

 tokens_after_expr))

11/6/12 17

<expr> ::= <term> + <expr>

 (match expr tokens_after_plus

 with (expr_parse , tokens_after_expr) ->

 (Plus_Expr (term_parse , expr_parse),

 tokens_after_expr))

Parsing a Plus Expression

11/6/12 18

Building Plus Expression Parse Tree

<expr> ::= <term> + <expr>

 (match expr tokens_after_plus

 with (expr_parse , tokens_after_expr) ->

 (Plus_Expr (term_parse , expr_parse),

 tokens_after_expr))

11/6/12 19

<expr> ::= <term> - <expr>

 | (Minus_token :: tokens_after_minus) ->

 (match expr tokens_after_minus

 with (expr_parse , tokens_after_expr) ->

 (Minus_Expr (term_parse , expr_parse),

 tokens_after_expr))

Parsing a Minus Expression

11/6/12 20

Parsing a Minus Expression

<expr> ::= <term> - <expr>

 | (Minus_token :: tokens_after_minus) ->

 (match expr tokens_after_minus

 with (expr_parse , tokens_after_expr) ->

 (Minus_Expr (term_parse , expr_parse),

 tokens_after_expr))

11/6/12 21

<expr> ::= <term>

 | _ -> (Term_as_Expr term_parse ,
tokens_after_term)))

  Code for term is same except for
replacing addition with multiplication
and subtraction with division

Parsing an Expression as a Term

11/6/12 22

Parsing Factor as Id

<factor> ::= <id>

and factor tokens =
 (match tokens
 with (Id_token id_name :: tokens_after_id) =
 (Id_as_Factor id_name, tokens_after_id)

11/6/12 23

 <factor> ::= (<expr>)

 | factor (Left_parenthesis :: tokens) =

 (match expr tokens

 with (expr_parse , tokens_after_expr) ->

Parsing Factor as Parenthesized Expression

11/6/12

<factor> ::= (<expr>)

(match tokens_after_expr

with Right_parenthesis :: tokens_after_rparen ->

 (Parenthesized_Expr_as_Factor expr_parse ,
tokens_after_rparen)

Parsing Factor as Parenthesized Expression

11/6/12 25

Error Cases

  What if no matching right parenthesis?

 | _ -> raise (Failure "No matching
rparen")))

  What if no leading id or left parenthesis?
 | _ -> raise (Failure "No id or lparen"));;

11/6/12 26

(a + b) * c - d

expr [Left_parenthesis; Id_token "a”;
Plus_token; Id_token "b”;
Right_parenthesis; Times_token;
Id_token "c”; Minus_token;
Id_token "d"];;

11/6/12 27

(a + b) * c - d

- : expr * token list =
(Minus_Expr
 (Mult_Term
 (Parenthesized_Expr_as_Factor
 (Plus_Expr
 (Factor_as_Term (Id_as_Factor "a"),
 Term_as_Expr (Factor_as_Term

(Id_as_Factor "b")))),
 Factor_as_Term (Id_as_Factor "c")),
 Term_as_Expr (Factor_as_Term (Id_as_Factor

"d"))),
 [])

11/6/12 28

(a + b) * c – d

 <expr>

 <term> - <expr>

 <factor> * <term> <term>

 (<expr>) <factor> <factor>

 <term> + <expr> <id> <id>

 <factor> <term> c d

 <id> <factor>

 a <id>

 b

11/6/12 29

a + b * c – d

expr [Id_token "a”; Plus_token; Id_token "b”;
Times_token; Id_token "c”; Minus_token;
 Id_token "d"];;

- : expr * token list =
(Plus_Expr
 (Factor_as_Term (Id_as_Factor "a"),
 Minus_Expr
 (Mult_Term (Id_as_Factor "b", Factor_as_Term

(Id_as_Factor "c")),
 Term_as_Expr (Factor_as_Term (Id_as_Factor

"d")))),
 [])

11/6/12 30

a + b * c – d

 <expr>

 <term> + <expr>

<factor> < term> - <expr>

 <id> <factor> * <term> <term>

 a <id> <factor> <factor>

 b <id> <id>

 c d

11/6/12 31

(a + b * c - d

expr [Left_parenthesis; Id_token "a”;
Plus_token; Id_token "b”; Times_token;
Id_token "c”; Minus_token; Id_token "d"];;

 Exception: Failure "No matching rparen".

Can’t parse because it was expecting a
right parenthesis but it got to the end
without finding one

11/6/12 32

a + b) * c - d *)

expr [Id_token "a”; Plus_token; Id_token "b”;
Right_parenthesis; Times_token; Id_token "c”;
Minus_token; Id_token "d"];;

- : expr * token list =
(Plus_Expr
 (Factor_as_Term (Id_as_Factor "a"),
 Term_as_Expr (Factor_as_Term (Id_as_Factor

"b"))),
 [Right_parenthesis; Times_token; Id_token "c";

Minus_token; Id_token "d"])

Parsing Whole String

  Q: How to guarantee whole string parses?
  A: Check returned tokens empty

let parse tokens =

 match expr tokens

 with (expr_parse, []) -> expr_parse
 | _ -> raise (Failure “No parse");;

  Fixes <expr> as start symbol

11/6/12 33

11/6/12 34

Streams in Place of Lists

  More realistically, we don't want to create
the entire list of tokens before we can start
parsing

  We want to generate one token at a time
and use it to make one step in parsing

  Will use (token * (unit -> token)) or (token *
(unit -> token option))

 in place of token list

11/6/12 35

Problems for Recursive-Descent Parsing

  Left Recursion:
 A ::= Aw

 translates to a subroutine that loops forever
  Indirect Left Recursion:
 A ::= Bw
 B ::= Av
 causes the same problem

11/6/12 36

Problems for Recursive-Descent Parsing

  Parser must always be able to choose
the next action based only only the
very next token

  Pairwise Disjointedness Test: Can we
always determine which rule (in the
non-extended BNF) to choose based
on just the first token

11/6/12 37

Pairwise Disjointedness Test

  For each rule
A ::= y

Calculate
FIRST (y) =
 {a | y =>* aw} ∪ {ε | if y =>* ε}
  For each pair of rules A ::= y and A ::=

z, require FIRST(y) ∩ FIRST(z) = { }

11/6/12 38

Example

Grammar:
<S> ::= <A> a b
<A> ::= <A> b | b
 ::= a | a

FIRST (<A> b) = {b}
FIRST (b) = {b}
Rules for <A> not pairwise disjoint

11/6/12 39

Eliminating Left Recursion

  Rewrite grammar to shift left recursion to
right recursion
  Changes associativity

  Given
<expr> ::= <expr> + <term> and
<expr> ::= <term>
  Add new non-terminal <e> and replace

above rules with
<expr> ::= <term><e>
<e> ::= + <term><e> | ε

11/6/12 40

Factoring Grammar

  Test too strong: Can’t handle
 <expr> ::= <term> [(+ | -) <expr>]

  Answer: Add new non-terminal and replace
above rules by
<expr> ::= <term><e>
<e> ::= + <term><e>
<e> ::= - <term><e>
<e> ::= ε

  You are delaying the decision point

11/6/12 41

Example

Both <A> and
have problems:

<S> ::= <A> a b
<A> ::= <A> b | b
 ::= a | a

Transform grammar
to:

<S> ::= <A> a b
<A> ::-= b<A1>
<A1> :: b<A1> | ε
 ::= a<B1>
<B1> ::= a<B1> | ε

11/6/12 42

Semantics

  Expresses the meaning of syntax
  Static semantics

  Meaning based only on the form of the
expression without executing it

  Usually restricted to type checking / type
inference

11/6/12 43

Dynamic semantics

  Method of describing meaning of
executing a program

  Several different types:
 Operational Semantics
 Axiomatic Semantics
 Denotational Semantics

11/6/12 44

Dynamic Semantics

 Different languages better suited
to different types of semantics

 Different types of semantics
serve different purposes

11/6/12 45

Operational Semantics

  Start with a simple notion of machine

  Describe how to execute (implement)
programs of language on virtual machine, by
describing how to execute each program
statement (ie, following the structure of the
program)

  Meaning of program is how its execution
changes the state of the machine

  Useful as basis for implementations

11/6/12 46

Axiomatic Semantics

  Also called Floyd-Hoare Logic
  Based on formal logic (first order

predicate calculus)
  Axiomatic Semantics is a logical system

built from axioms and inference rules
  Mainly suited to simple imperative

programming languages

11/6/12 47

Axiomatic Semantics

  Used to formally prove a property
(post-condition) of the state (the
values of the program variables) after
the execution of program, assuming
another property (pre-condition) of the
state before execution

  Written :
{Precondition} Program {Postcondition}

  Source of idea of loop invariant

11/6/12 48

Denotational Semantics

  Construct a function M assigning a
mathematical meaning to each program
construct

  Lambda calculus often used as the range
of the meaning function

  Meaning function is compositional:
meaning of construct built from meaning
of parts

  Useful for proving properties of programs

11/6/12 49

Natural Semantics

  Aka Structural Operational Semantics, aka
“Big Step Semantics”

  Provide value for a program by rules and
derivations, similar to type derivations

  Rule conclusions look like
(C, m) ⇓ m’

or
(E, m) ⇓ v

