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Recursive Descent Parsing 

  Recursive descent parsers are a class of 
parsers derived fairly directly from BNF 
grammars 

  A recursive descent parser traces out a 
parse tree in top-down order, 
corresponding to a left-most derivation 
(LL - left-to-right scanning, leftmost 
derivation) 
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Recursive Descent Parsing 

  Each nonterminal in the grammar has a 
subprogram associated with it; the 
subprogram parses all phrases that the 
nonterminal can generate 

  Each nonterminal in right-hand side of a rule 
corresponds  to a recursive call to the 
associated subprogram 
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Recursive Descent Parsing 

  Each subprogram must be able to decide 
how to begin parsing by looking at the left-
most character in the string to be parsed 
  May do so directly, or indirectly by calling 

another parsing subprogram  

  Recursive descent parsers, like other top-
down parsers, cannot be built from left-
recursive grammars 
  Sometimes can modify grammar to suit 
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Sample Grammar 

<expr> ::= <term> | <term> + <expr> 
             | <term> - <expr> 

<term> ::= <factor> | <factor> * <term> 
             | <factor> / <term> 

<factor> ::= <id> | ( <expr> ) 

11/6/12 6 

Tokens as OCaml Types 

  +  -  *  /  (  )  <id> 
  Becomes an OCaml datatype 
type token = 
     Id_token of string 
   | Left_parenthesis | Right_parenthesis 
   | Times_token | Divide_token 
   | Plus_token | Minus_token 



11/6/12 7 

Parse Trees as Datatypes 

<expr> ::= <term> | <term> + <expr> 
             | <term> - <expr> 

type expr = 
    Term_as_Expr of term 
  | Plus_Expr of (term * expr) 
  | Minus_Expr of (term * expr) 
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Parse Trees as Datatypes 

<term> ::= <factor> | <factor> * 
<term> 

                | <factor> / <term> 

and term = 
    Factor_as_Term of factor  
  | Mult_Term of (factor * term) 
  | Div_Term of (factor * term) 
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Parse Trees as Datatypes 

<factor> ::= <id> | ( <expr> ) 

and factor = 
    Id_as_Factor of string 
  | Parenthesized_Expr_as_Factor of expr 
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Parsing Lists of Tokens 

  Will create three mutually recursive 
functions: 
  expr : token list -> (expr * token list) 
  term : token list -> (term * token list) 
  factor : token list -> (factor * token list) 

  Each parses what it can and gives back 
parse and remaining tokens 
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<expr> ::= <term> [( + | - ) <expr> ] 
 let rec expr tokens = 

    (match term tokens 

      with ( term_parse , tokens_after_term) -> 

        (match tokens_after_term 

          with( Plus_token  :: tokens_after_plus) -> 

Parsing an Expression 
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<expr> ::= <term> [( + | - ) <expr> ] 

 let rec expr tokens = 

    (match term tokens 

      with ( term_parse , tokens_after_term) -> 
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Parsing an Expression 



11/6/12 13 

<expr> ::= <term> [( + | - ) <expr> ] 

 let rec expr tokens = 

    (match term tokens 

      with ( term_parse , tokens_after_term) -> 

        (match tokens_after_term 

         with ( Plus_token  :: tokens_after_plus) -> 

Parsing a Plus Expression 
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<expr> ::= <term> [( + | - ) <expr> ] 
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Parsing a Plus Expression 

<expr> ::= <term> + <expr>   

       (match expr tokens_after_plus 

      with ( expr_parse  , tokens_after_expr) -> 

  ( Plus_Expr  ( term_parse  ,  expr_parse ), 

    tokens_after_expr)) 
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<expr> ::= <term> + <expr>   

 (match expr tokens_after_plus 

      with ( expr_parse  , tokens_after_expr) -> 

  ( Plus_Expr  ( term_parse  ,  expr_parse ), 

    tokens_after_expr)) 

Parsing a Plus Expression 
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Building Plus Expression Parse Tree 

<expr> ::= <term> + <expr>   

 (match expr tokens_after_plus 

      with ( expr_parse  , tokens_after_expr) -> 

  ( Plus_Expr  ( term_parse  ,  expr_parse ), 

    tokens_after_expr)) 
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<expr> ::=  <term> - <expr>   

      | ( Minus_token  :: tokens_after_minus) -> 

         (match expr tokens_after_minus 

       with ( expr_parse  , tokens_after_expr) -> 

  ( Minus_Expr  ( term_parse  ,  expr_parse  ), 

    tokens_after_expr)) 

Parsing a Minus Expression 
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Parsing a Minus Expression 

<expr> ::=  <term> - <expr>   

      | ( Minus_token  :: tokens_after_minus) -> 

         (match expr tokens_after_minus 

       with ( expr_parse  , tokens_after_expr) -> 

  ( Minus_Expr  ( term_parse  ,  expr_parse  ), 

    tokens_after_expr)) 
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<expr> ::=  <term> 

 | _ -> (Term_as_Expr  term_parse  , 
tokens_after_term))) 

  Code for  term  is same except for 
replacing addition with multiplication 
and subtraction with division 

Parsing an Expression as a Term 
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Parsing Factor as Id 

<factor> ::= <id>  

and factor  tokens = 
 (match tokens 
  with (Id_token id_name :: tokens_after_id) =  
   ( Id_as_Factor  id_name, tokens_after_id) 
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  <factor> ::= ( <expr> ) 

 | factor ( Left_parenthesis  :: tokens) = 

     (match expr tokens 

      with ( expr_parse , tokens_after_expr) -> 

Parsing Factor as Parenthesized Expression 
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<factor> ::=  ( <expr> ) 

(match tokens_after_expr 

with Right_parenthesis :: tokens_after_rparen -> 

 ( Parenthesized_Expr_as_Factor   expr_parse  ,  
tokens_after_rparen) 

Parsing Factor as Parenthesized Expression 
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Error Cases 

  What if no matching right parenthesis? 

    | _ -> raise (Failure "No matching 
rparen") )) 

  What if no leading id or left parenthesis? 
 | _ -> raise (Failure "No id or lparen" ));; 
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( a + b ) * c - d 

expr [Left_parenthesis; Id_token "a”; 
Plus_token; Id_token "b”; 
Right_parenthesis; Times_token; 
Id_token "c”; Minus_token;       
Id_token "d"];; 
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( a + b ) * c - d 

- : expr * token list = 
(Minus_Expr 
  (Mult_Term 
    (Parenthesized_Expr_as_Factor 
      (Plus_Expr 
        (Factor_as_Term (Id_as_Factor "a"), 
         Term_as_Expr (Factor_as_Term 

(Id_as_Factor "b")))), 
     Factor_as_Term (Id_as_Factor "c")), 
   Term_as_Expr (Factor_as_Term (Id_as_Factor 

"d"))), 
 []) 
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( a + b ) * c – d 

                   <expr> 

              <term>       -      <expr> 

             <factor>   *    <term>      <term> 

       (     <expr>     )      <factor>   <factor> 

     <term>  +  <expr>    <id>          <id> 

    <factor>     <term>       c               d 

        <id>       <factor> 

          a            <id> 

                           b 
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a + b * c – d 

# expr [Id_token "a”; Plus_token; Id_token "b”;      
Times_token; Id_token "c”; Minus_token; 
      Id_token "d"];; 

- : expr * token list = 
(Plus_Expr 
  (Factor_as_Term (Id_as_Factor "a"), 
   Minus_Expr 
    (Mult_Term (Id_as_Factor "b", Factor_as_Term 

(Id_as_Factor "c")), 
     Term_as_Expr (Factor_as_Term (Id_as_Factor 

"d")))), 
 []) 

11/6/12 30 

a + b * c – d 

                   <expr> 

 <term>           +                <expr> 

<factor>                < term>     -    <expr> 

   <id>          <factor>  *  <term>  <term> 

      a               <id>       <factor>  <factor> 

                         b             <id>       <id> 

                                           c            d 
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( a + b * c - d 

# expr [Left_parenthesis; Id_token "a”; 
Plus_token; Id_token "b”; Times_token; 
Id_token "c”; Minus_token; Id_token "d"];; 

 Exception: Failure "No matching rparen".  

Can’t parse because it was expecting a  
right parenthesis but it got to the end 
without finding one 
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a + b ) * c - d *) 

expr [Id_token "a”; Plus_token; Id_token "b”; 
Right_parenthesis; Times_token; Id_token "c”; 
Minus_token; Id_token "d"];; 

- : expr * token list = 
(Plus_Expr 
  (Factor_as_Term (Id_as_Factor "a"), 
   Term_as_Expr (Factor_as_Term (Id_as_Factor 

"b"))), 
 [Right_parenthesis; Times_token; Id_token "c"; 

Minus_token; Id_token "d"]) 

Parsing Whole String 

  Q: How to guarantee whole string parses? 
  A: Check returned tokens empty 

let parse tokens  = 

    match expr tokens  

     with (expr_parse, []) -> expr_parse 
     | _ -> raise (Failure “No parse");; 

  Fixes <expr> as start symbol 
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Streams in Place of Lists 

  More realistically, we don't want to create 
the entire list of tokens before we can start 
parsing 

  We want to generate one token at a time 
and use it to make one step in parsing 

  Will use (token * (unit -> token)) or (token * 
(unit -> token option))  

    in place of  token list 
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Problems for Recursive-Descent Parsing 

  Left Recursion: 
  A ::= Aw 

   translates to a subroutine that loops forever 
  Indirect Left Recursion: 
  A ::= Bw 
  B ::= Av 
 causes the same problem 
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Problems for Recursive-Descent Parsing 

  Parser must always be able to choose 
the next action based only only the 
very next token 

  Pairwise Disjointedness Test: Can we 
always determine which rule (in the 
non-extended BNF) to choose based 
on just the first token 
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Pairwise Disjointedness Test 

  For each rule 
A ::= y 

Calculate 
FIRST (y) = 
     {a | y =>* aw} ∪ {ε | if y =>* ε} 
  For each pair of rules  A ::= y  and A ::= 

z,  require FIRST(y) ∩ FIRST(z) = { } 
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Example 

Grammar:  
<S> ::= <A> a <B>  b 
<A> ::= <A> b | b 
<B> ::= a <B> | a 

FIRST (<A> b) = {b} 
FIRST (b) = {b} 
Rules for <A> not pairwise disjoint 
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Eliminating Left Recursion 

  Rewrite grammar to shift left recursion to 
right recursion  
  Changes associativity 

  Given  
<expr> ::= <expr> + <term> and  
<expr> ::= <term> 
  Add new non-terminal <e> and replace 

above rules with 
<expr> ::= <term><e> 
<e> ::= + <term><e> | ε  
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Factoring Grammar 

  Test too strong: Can’t handle 
 <expr> ::= <term> [ ( + | - ) <expr> ] 

  Answer: Add new non-terminal and replace 
above rules by 
<expr> ::= <term><e> 
<e> ::= + <term><e> 
<e> ::= - <term><e> 
<e> ::= ε  

  You are delaying the decision point 
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Example 

Both <A> and <B> 
have problems: 

<S> ::= <A> a <B> b 
<A> ::= <A> b | b 
<B> ::= a <B> | a 

Transform grammar 
to: 

<S> ::= <A> a <B> b  
<A> ::-= b<A1> 
<A1> :: b<A1> |  ε 
<B> ::= a<B1> 
<B1> ::= a<B1> | ε 
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Semantics 

  Expresses the meaning of syntax 
  Static semantics 

  Meaning based only on the form of the 
expression without executing it 

  Usually restricted to type checking / type 
inference 
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Dynamic semantics 

  Method of describing meaning of 
executing a program 

  Several different types: 
 Operational Semantics 
 Axiomatic Semantics 
 Denotational Semantics 
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Dynamic Semantics 

 Different languages better suited 
to different types of semantics 

 Different types of semantics 
serve different purposes 
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Operational Semantics 

  Start with a simple notion of machine 

  Describe how to execute (implement) 
programs of language on virtual machine, by 
describing how to execute each program 
statement (ie, following the structure of the 
program) 

  Meaning of program is how its execution 
changes the state of the machine 

  Useful as basis for implementations 
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Axiomatic Semantics 

  Also called Floyd-Hoare Logic 
  Based on formal logic (first order 

predicate calculus) 
  Axiomatic Semantics is a logical system 

built from axioms and inference rules 
  Mainly suited to simple imperative 

programming languages 
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Axiomatic Semantics 

  Used to formally prove a property 
(post-condition) of the state (the 
values of the program variables) after 
the execution of program, assuming 
another property (pre-condition) of the 
state before execution 

  Written : 
{Precondition} Program {Postcondition} 

  Source of idea of loop invariant  
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Denotational Semantics 

  Construct a function M assigning a 
mathematical meaning to each program 
construct 

  Lambda calculus often used as the range 
of the meaning function 

  Meaning function is compositional: 
meaning of construct built from meaning 
of parts 

  Useful for proving properties of programs 
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Natural Semantics 

  Aka Structural Operational Semantics, aka 
“Big Step Semantics” 

  Provide value for a program by rules and 
derivations, similar to type derivations 

  Rule conclusions look like  
(C, m) ⇓ m’ 

or 
(E, m) ⇓ v 


