
11/6/12 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

11/6/12 2

Recursive Descent Parsing

  Recursive descent parsers are a class of
parsers derived fairly directly from BNF
grammars

  A recursive descent parser traces out a
parse tree in top-down order,
corresponding to a left-most derivation
(LL - left-to-right scanning, leftmost
derivation)

11/6/12 3

Recursive Descent Parsing

  Each nonterminal in the grammar has a
subprogram associated with it; the
subprogram parses all phrases that the
nonterminal can generate

  Each nonterminal in right-hand side of a rule
corresponds to a recursive call to the
associated subprogram

11/6/12 4

Recursive Descent Parsing

  Each subprogram must be able to decide
how to begin parsing by looking at the left-
most character in the string to be parsed
  May do so directly, or indirectly by calling

another parsing subprogram

  Recursive descent parsers, like other top-
down parsers, cannot be built from left-
recursive grammars
  Sometimes can modify grammar to suit

11/6/12 5

Sample Grammar

<expr> ::= <term> | <term> + <expr>
 | <term> - <expr>

<term> ::= <factor> | <factor> * <term>
 | <factor> / <term>

<factor> ::= <id> | (<expr>)

11/6/12 6

Tokens as OCaml Types

  + - * / () <id>
  Becomes an OCaml datatype
type token =
 Id_token of string
 | Left_parenthesis | Right_parenthesis
 | Times_token | Divide_token
 | Plus_token | Minus_token

11/6/12 7

Parse Trees as Datatypes

<expr> ::= <term> | <term> + <expr>
 | <term> - <expr>

type expr =
 Term_as_Expr of term
 | Plus_Expr of (term * expr)
 | Minus_Expr of (term * expr)

11/6/12 8

Parse Trees as Datatypes

<term> ::= <factor> | <factor> *
<term>

 | <factor> / <term>

and term =
 Factor_as_Term of factor
 | Mult_Term of (factor * term)
 | Div_Term of (factor * term)

11/6/12 9

Parse Trees as Datatypes

<factor> ::= <id> | (<expr>)

and factor =
 Id_as_Factor of string
 | Parenthesized_Expr_as_Factor of expr

11/6/12 10

Parsing Lists of Tokens

  Will create three mutually recursive
functions:
  expr : token list -> (expr * token list)
  term : token list -> (term * token list)
  factor : token list -> (factor * token list)

  Each parses what it can and gives back
parse and remaining tokens

11/6/12 11

<expr> ::= <term> [(+ | -) <expr>]
 let rec expr tokens =

 (match term tokens

 with (term_parse , tokens_after_term) ->

 (match tokens_after_term

 with(Plus_token :: tokens_after_plus) ->

Parsing an Expression

11/6/12 12

<expr> ::= <term> [(+ | -) <expr>]

 let rec expr tokens =

 (match term tokens

 with (term_parse , tokens_after_term) ->

 (match tokens_after_term

 with (Plus_token :: tokens_after_plus) ->

Parsing an Expression

11/6/12 13

<expr> ::= <term> [(+ | -) <expr>]

 let rec expr tokens =

 (match term tokens

 with (term_parse , tokens_after_term) ->

 (match tokens_after_term

 with (Plus_token :: tokens_after_plus) ->

Parsing a Plus Expression

11/6/12 14

<expr> ::= <term> [(+ | -) <expr>]

 let rec expr tokens =

 (match term tokens

 with (term_parse , tokens_after_term) ->

 (match tokens_after_term

 with (Plus_token :: tokens_after_plus) ->

Parsing a Plus Expression

11/6/12 15

<expr> ::= <term> [(+ | -) <expr>]

 let rec expr tokens =

 (match term tokens

 with (term_parse , tokens_after_term) ->

 (match tokens_after_term

 with (Plus_token :: tokens_after_plus) ->

Parsing a Plus Expression

11/6/12 16

Parsing a Plus Expression

<expr> ::= <term> + <expr>

 (match expr tokens_after_plus

 with (expr_parse , tokens_after_expr) ->

 (Plus_Expr (term_parse , expr_parse),

 tokens_after_expr))

11/6/12 17

<expr> ::= <term> + <expr>

 (match expr tokens_after_plus

 with (expr_parse , tokens_after_expr) ->

 (Plus_Expr (term_parse , expr_parse),

 tokens_after_expr))

Parsing a Plus Expression

11/6/12 18

Building Plus Expression Parse Tree

<expr> ::= <term> + <expr>

 (match expr tokens_after_plus

 with (expr_parse , tokens_after_expr) ->

 (Plus_Expr (term_parse , expr_parse),

 tokens_after_expr))

11/6/12 19

<expr> ::= <term> - <expr>

 | (Minus_token :: tokens_after_minus) ->

 (match expr tokens_after_minus

 with (expr_parse , tokens_after_expr) ->

 (Minus_Expr (term_parse , expr_parse),

 tokens_after_expr))

Parsing a Minus Expression

11/6/12 20

Parsing a Minus Expression

<expr> ::= <term> - <expr>

 | (Minus_token :: tokens_after_minus) ->

 (match expr tokens_after_minus

 with (expr_parse , tokens_after_expr) ->

 (Minus_Expr (term_parse , expr_parse),

 tokens_after_expr))

11/6/12 21

<expr> ::= <term>

 | _ -> (Term_as_Expr term_parse ,
tokens_after_term)))

  Code for term is same except for
replacing addition with multiplication
and subtraction with division

Parsing an Expression as a Term

11/6/12 22

Parsing Factor as Id

<factor> ::= <id>

and factor tokens =
 (match tokens
 with (Id_token id_name :: tokens_after_id) =
 (Id_as_Factor id_name, tokens_after_id)

11/6/12 23

 <factor> ::= (<expr>)

 | factor (Left_parenthesis :: tokens) =

 (match expr tokens

 with (expr_parse , tokens_after_expr) ->

Parsing Factor as Parenthesized Expression

11/6/12

<factor> ::= (<expr>)

(match tokens_after_expr

with Right_parenthesis :: tokens_after_rparen ->

 (Parenthesized_Expr_as_Factor expr_parse ,
tokens_after_rparen)

Parsing Factor as Parenthesized Expression

11/6/12 25

Error Cases

  What if no matching right parenthesis?

 | _ -> raise (Failure "No matching
rparen")))

  What if no leading id or left parenthesis?
 | _ -> raise (Failure "No id or lparen"));;

11/6/12 26

(a + b) * c - d

expr [Left_parenthesis; Id_token "a”;
Plus_token; Id_token "b”;
Right_parenthesis; Times_token;
Id_token "c”; Minus_token;
Id_token "d"];;

11/6/12 27

(a + b) * c - d

- : expr * token list =
(Minus_Expr
 (Mult_Term
 (Parenthesized_Expr_as_Factor
 (Plus_Expr
 (Factor_as_Term (Id_as_Factor "a"),
 Term_as_Expr (Factor_as_Term

(Id_as_Factor "b")))),
 Factor_as_Term (Id_as_Factor "c")),
 Term_as_Expr (Factor_as_Term (Id_as_Factor

"d"))),
 [])

11/6/12 28

(a + b) * c – d

 <expr>

 <term> - <expr>

 <factor> * <term> <term>

 (<expr>) <factor> <factor>

 <term> + <expr> <id> <id>

 <factor> <term> c d

 <id> <factor>

 a <id>

 b

11/6/12 29

a + b * c – d

expr [Id_token "a”; Plus_token; Id_token "b”;
Times_token; Id_token "c”; Minus_token;
 Id_token "d"];;

- : expr * token list =
(Plus_Expr
 (Factor_as_Term (Id_as_Factor "a"),
 Minus_Expr
 (Mult_Term (Id_as_Factor "b", Factor_as_Term

(Id_as_Factor "c")),
 Term_as_Expr (Factor_as_Term (Id_as_Factor

"d")))),
 [])

11/6/12 30

a + b * c – d

 <expr>

 <term> + <expr>

<factor> < term> - <expr>

 <id> <factor> * <term> <term>

 a <id> <factor> <factor>

 b <id> <id>

 c d

11/6/12 31

(a + b * c - d

expr [Left_parenthesis; Id_token "a”;
Plus_token; Id_token "b”; Times_token;
Id_token "c”; Minus_token; Id_token "d"];;

 Exception: Failure "No matching rparen".

Can’t parse because it was expecting a
right parenthesis but it got to the end
without finding one

11/6/12 32

a + b) * c - d *)

expr [Id_token "a”; Plus_token; Id_token "b”;
Right_parenthesis; Times_token; Id_token "c”;
Minus_token; Id_token "d"];;

- : expr * token list =
(Plus_Expr
 (Factor_as_Term (Id_as_Factor "a"),
 Term_as_Expr (Factor_as_Term (Id_as_Factor

"b"))),
 [Right_parenthesis; Times_token; Id_token "c";

Minus_token; Id_token "d"])

Parsing Whole String

  Q: How to guarantee whole string parses?
  A: Check returned tokens empty

let parse tokens =

 match expr tokens

 with (expr_parse, []) -> expr_parse
 | _ -> raise (Failure “No parse");;

  Fixes <expr> as start symbol

11/6/12 33 11/6/12 34

Streams in Place of Lists

  More realistically, we don't want to create
the entire list of tokens before we can start
parsing

  We want to generate one token at a time
and use it to make one step in parsing

  Will use (token * (unit -> token)) or (token *
(unit -> token option))

 in place of token list

11/6/12 35

Problems for Recursive-Descent Parsing

  Left Recursion:
 A ::= Aw

 translates to a subroutine that loops forever
  Indirect Left Recursion:
 A ::= Bw
 B ::= Av
 causes the same problem

11/6/12 36

Problems for Recursive-Descent Parsing

  Parser must always be able to choose
the next action based only only the
very next token

  Pairwise Disjointedness Test: Can we
always determine which rule (in the
non-extended BNF) to choose based
on just the first token

11/6/12 37

Pairwise Disjointedness Test

  For each rule
A ::= y

Calculate
FIRST (y) =
 {a | y =>* aw} ∪ {ε | if y =>* ε}
  For each pair of rules A ::= y and A ::=

z, require FIRST(y) ∩ FIRST(z) = { }

11/6/12 38

Example

Grammar:
<S> ::= <A> a b
<A> ::= <A> b | b
 ::= a | a

FIRST (<A> b) = {b}
FIRST (b) = {b}
Rules for <A> not pairwise disjoint

11/6/12 39

Eliminating Left Recursion

  Rewrite grammar to shift left recursion to
right recursion
  Changes associativity

  Given
<expr> ::= <expr> + <term> and
<expr> ::= <term>
  Add new non-terminal <e> and replace

above rules with
<expr> ::= <term><e>
<e> ::= + <term><e> | ε

11/6/12 40

Factoring Grammar

  Test too strong: Can’t handle
 <expr> ::= <term> [(+ | -) <expr>]

  Answer: Add new non-terminal and replace
above rules by
<expr> ::= <term><e>
<e> ::= + <term><e>
<e> ::= - <term><e>
<e> ::= ε

  You are delaying the decision point

11/6/12 41

Example

Both <A> and
have problems:

<S> ::= <A> a b
<A> ::= <A> b | b
 ::= a | a

Transform grammar
to:

<S> ::= <A> a b
<A> ::-= b<A1>
<A1> :: b<A1> | ε
 ::= a<B1>
<B1> ::= a<B1> | ε

11/6/12 42

Semantics

  Expresses the meaning of syntax
  Static semantics

  Meaning based only on the form of the
expression without executing it

  Usually restricted to type checking / type
inference

11/6/12 43

Dynamic semantics

  Method of describing meaning of
executing a program

  Several different types:
 Operational Semantics
 Axiomatic Semantics
 Denotational Semantics

11/6/12 44

Dynamic Semantics

 Different languages better suited
to different types of semantics

 Different types of semantics
serve different purposes

11/6/12 45

Operational Semantics

  Start with a simple notion of machine

  Describe how to execute (implement)
programs of language on virtual machine, by
describing how to execute each program
statement (ie, following the structure of the
program)

  Meaning of program is how its execution
changes the state of the machine

  Useful as basis for implementations

11/6/12 46

Axiomatic Semantics

  Also called Floyd-Hoare Logic
  Based on formal logic (first order

predicate calculus)
  Axiomatic Semantics is a logical system

built from axioms and inference rules
  Mainly suited to simple imperative

programming languages

11/6/12 47

Axiomatic Semantics

  Used to formally prove a property
(post-condition) of the state (the
values of the program variables) after
the execution of program, assuming
another property (pre-condition) of the
state before execution

  Written :
{Precondition} Program {Postcondition}

  Source of idea of loop invariant

11/6/12 48

Denotational Semantics

  Construct a function M assigning a
mathematical meaning to each program
construct

  Lambda calculus often used as the range
of the meaning function

  Meaning function is compositional:
meaning of construct built from meaning
of parts

  Useful for proving properties of programs

11/6/12 49

Natural Semantics

  Aka Structural Operational Semantics, aka
“Big Step Semantics”

  Provide value for a program by rules and
derivations, similar to type derivations

  Rule conclusions look like
(C, m) ⇓ m’

or
(E, m) ⇓ v

