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General Input 

{ header } 
let ident = regexp ... 
rule entrypoint [arg1... argn] = parse     
       regexp { action }  
    | ...  
    | regexp { action } 
and entrypoint [arg1... argn] =  

parse ...and ... 
{ trailer } 
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Ocamllex Input 

  header and trailer contain arbitrary 
ocaml code put at top an bottom of 
<filename>.ml 

  let ident = regexp ...  Introduces ident 
for use in later regular expressions 
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Ocamllex Input 

  <filename>.ml contains one lexing 
function per entrypoint 
  Name of function is name given for 

entrypoint 
  Each entry point becomes an Ocaml 

function that takes n+1 arguments, the 
extra implicit last argument being of type 
Lexing.lexbuf 

  arg1... argn are for use in action 
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Ocamllex Regular Expression 

  Single quoted characters for letters: 
‘a’ 

  _: (underscore) matches any letter 
  Eof: special “end_of_file” marker 
  Concatenation same as usual 
  “string”: concatenation of sequence 

of characters 
  e1 | e2 : choice - what was e1 ∨ e2 
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Ocamllex Regular Expression 

  [c1 - c2]: choice of any character 
between first and second inclusive, as 
determined by character codes 

  [^c1 - c2]: choice of any character NOT 
in set 

  e*: same as before 
  e+: same as e e* 
  e?: option - was e1 ∨ ε 
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Ocamllex Regular Expression 

  e1 # e2: the characters in e1 but not in 
e2; e1 and e2 must describe just sets of 
characters 

  ident: abbreviation for earlier reg exp in 
let ident = regexp  

   e1 as id: binds the result of e1 to id to 
be used in the associated action 
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Ocamllex Manual 

  More details can be found at 

http://caml.inria.fr/pub/docs/manual-ocaml/
manual026.html 

10/25/12 9 

Example : test.mll 

{ type result = Int of int | Float of float | 
String of string } 

let digit = ['0'-'9'] 
let digits = digit + 
let lower_case = ['a'-'z'] 
let upper_case = ['A'-'Z'] 
let letter = upper_case | lower_case 
let letters = letter + 
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Example : test.mll 

rule main = parse 
   (digits)'.'digits as f  { Float (float_of_string f) } 
 | digits as n              { Int (int_of_string n) } 
 | letters as s             { String s} 
 | _ { main lexbuf } 
 { let newlexbuf = (Lexing.from_channel stdin) in 
 print_string "Ready to lex."; 
 print_newline (); 
 main newlexbuf  } 
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Example 

# #use "test.ml";; 
… 
val main : Lexing.lexbuf -> result = <fun> 
val __ocaml_lex_main_rec : Lexing.lexbuf -> int -> 

result = <fun> 
Ready to lex. 
hi there 234 5.2 
- : result = String "hi" 
What happened to the rest?!? 
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Example 

# let b = Lexing.from_channel stdin;; 
# main b;; 
hi 673 there 
- : result = String "hi" 
# main b;; 
- : result = Int 673 
# main b;; 
- : result = String "there" 
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Problem 

  How to get lexer to look at more than the 
first token at one time? 

  Answer: action has to tell it to -- recursive 
calls 

  Side Benefit: can add “state” into lexing 
  Note: already used this with the _ case 

10/25/12 14 

Example 

rule main = parse 
   (digits) '.' digits as f { Float 

(float_of_string f) :: main lexbuf} 
 | digits as n          { Int (int_of_string n) :: 

main lexbuf } 
 | letters as s         { String s :: main 

lexbuf} 
 | eof                     { [] } 
 | _                        { main lexbuf } 
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Example Results 

Ready to lex. 
hi there 234 5.2 
- : result list = [String "hi"; String "there"; Int 

234; Float 5.2] 
#  

Used Ctrl-d to send the end-of-file signal 
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Dealing with comments 

First Attempt 
let open_comment = "(*" 
let close_comment = "*)" 
rule main = parse 
   (digits) '.' digits as f { Float (float_of_string 

f) :: main lexbuf} 
 | digits as n          { Int (int_of_string n) :: 

main lexbuf } 
 | letters as s         { String s :: main lexbuf} 
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Dealing with comments 

 | open_comment         { comment  lexbuf} 
 | eof                  { [] } 
 | _ { main lexbuf } 
and comment = parse 
   close_comment       { main lexbuf } 
 | _                   { comment lexbuf } 
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Dealing with nested comments 

rule main = parse … 
 | open_comment         { comment 1 lexbuf} 
 | eof                  { [] } 
 | _ { main lexbuf } 
and comment depth = parse 
   open_comment        { comment (depth+1) 

lexbuf } 
 | close_comment       { if depth = 1 
                          then main lexbuf 
                         else comment (depth - 1) lexbuf } 
 | _                   { comment depth lexbuf } 
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Dealing with nested comments 

rule main = parse 
   (digits) '.' digits as f { Float (float_of_string f) :: 

main lexbuf} 
 | digits as n          { Int (int_of_string n) :: main 

lexbuf } 
 | letters as s         { String s :: main lexbuf} 
 | open_comment         { (comment 1 lexbuf} 
 | eof                  { [] } 
 | _ { main lexbuf } 
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Dealing with nested comments 

and comment depth = parse 
   open_comment        { comment (depth+1) lexbuf } 
 | close_comment       { if depth = 1 
                          then main lexbuf 
                         else comment (depth - 1) lexbuf } 
 | _                   { comment depth lexbuf } 
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Types of Formal Language Descriptions 

  Regular expressions, regular grammars 
  Context-free grammars, BNF grammars, 

syntax  diagrams 
  Finite state automata 

  Whole family more of grammars and 
automata – covered in automata theory 

10/25/12 22 

Sample Grammar 

  Language: Parenthesized sums of 0’s and 1’s 

  <Sum> ::= 0  
  <Sum >::= 1  
  <Sum> ::= <Sum> + <Sum> 
  <Sum> ::= (<Sum>) 
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BNF Grammars 

  Start with a set of characters,   a,b,c,… 
  We call these terminals 

  Add a set of different characters, X,Y,Z,
… 
  We call these nonterminals 

  One special nonterminal S called start 
symbol 

10/25/12 24 

BNF Grammars 

  BNF rules (aka productions) have form 
         X ::= y 
    where X is any nonterminal and y is a string 

of terminals and nonterminals 
  BNF grammar is a set of BNF rules such that 

every nonterminal appears on the left of 
some rule 
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Sample Grammar 

  Terminals: 0 1 + ( ) 
  Nonterminals: <Sum> 
  Start symbol = <Sum> 

  <Sum> ::= 0  
  <Sum >::= 1  
  <Sum> ::= <Sum> + <Sum> 
  <Sum> ::= (<Sum>) 
  Can be abbreviated as 
 <Sum> ::= 0 | 1  
                | <Sum> + <Sum> | (<Sum>) 
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BNF Deriviations 

  Given rules  
X::= yZw and Z::=v  

we may replace Z by v to say 
X => yZw => yvw  

  Sequence of such replacements called 
derivation 

  Derivation called right-most if always 
replace the right-most non-terminal 
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BNF Derivations 

  Start with the start symbol: 

<Sum> => 

10/25/12 28 

BNF Derivations 

  Pick a non-terminal 

<Sum> => 
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  Pick a rule and substitute: 
  <Sum> ::= <Sum> + <Sum> 

<Sum> => <Sum> + <Sum > 

BNF Derivations 
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  Pick a non-terminal: 

<Sum> => <Sum> + <Sum > 

BNF Derivations 
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  Pick a rule and substitute: 
  <Sum> ::= ( <Sum> ) 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 

BNF Derivations 
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  Pick a non-terminal: 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 

BNF Derivations 
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  Pick a rule and substitute: 
  <Sum> ::= <Sum> + <Sum> 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  

BNF Derivations 
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  Pick a non-terminal: 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  

BNF Derivations 
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  Pick a rule and substitute: 
  <Sum >::= 1 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  
            => ( <Sum> + 1 ) + <Sum> 

BNF Derivations 
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  Pick a non-terminal: 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  
            => ( <Sum> + 1 ) + <Sum> 

BNF Derivations 
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  Pick a rule and substitute: 
  <Sum >::= 0 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  
            => ( <Sum> + 1 ) + <Sum> 
            => ( <Sum> + 1 ) + 0 

BNF Derivations 
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  Pick a non-terminal: 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  
            => ( <Sum> + 1 ) + <Sum> 
            => ( <Sum> + 1 ) + 0 

BNF Derivations 
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  Pick a rule and substitute 
  <Sum> ::= 0 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  
            => ( <Sum> + 1 ) + <Sum> 
            => ( <Sum> + 1 ) 0 
            => ( 0 + 1 ) + 0 

BNF Derivations 
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  ( 0 + 1 ) + 0  is generated by grammar 

<Sum> => <Sum> + <Sum > 
            => ( <Sum> ) + <Sum> 
            => ( <Sum> + <Sum> ) + <Sum>  
            => ( <Sum> + 1 ) + <Sum> 
            => ( <Sum> + 1 ) + 0 
            => ( 0 + 1 ) + 0 

BNF Derivations 

10/25/12 41 

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>) 

<Sum> => 
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BNF Semantics 

  The meaning of a BNF grammar is the 
set of all strings consisting only of 
terminals that can be derived from the 
Start symbol 
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Extended BNF Grammars 

  Alternatives: allow rules of from X::=y|z 
  Abbreviates  X::= y, X::= z 

  Options:  X::=y[v]z 
  Abbreviates X::=yvz, X::=yz 

  Repetition: X::=y{v}*z 
  Can be eliminated by adding new 

nonterminal V and rules X::=yz, X::=yVz, 
V::=v, V::=vV 
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Regular Grammars 

  Subclass of BNF 
  Only rules of form 

<nonterminal>::=<terminal><nonterminal> or 
<nonterminal>::=<terminal> or 
<nonterminal>::=ε 

  Defines same class of languages as regular 
expressions 

  Important for writing lexers (programs that 
convert strings of characters into strings of 
tokens) 
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Example 

  Regular grammar:  
<Balanced> ::= ε 
<Balanced> ::=  0<OneAndMore> 
<Balanced> ::= 1<ZeroAndMore> 
<OneAndMore> ::= 1<Balanced> 
<ZeroAndMore> ::= 0<Balanced> 

  Generates even length strings where every 
initial substring of even length has same 
number of 0’s as 1’s 

10/25/12 46 

  Graphical representation of derivation 
  Each node labeled with either non-terminal 

or terminal 
  If node is labeled with a terminal, then it is a 

leaf (no sub-trees) 
  If node is labeled with a non-terminal, then 

it has one branch for each character in the 
right-hand side of rule used to substitute for 
it 

Parse Trees 
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Example 

  Consider grammar: 
 <exp>  ::= <factor> 
               |  <factor> +  <factor> 
 <factor>  ::=  <bin>  
                 |  <bin>  *  <exp> 
 <bin> ::=  0  | 1 

  Problem: Build parse tree for  1 * 1 + 0 as 
an <exp> 
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Example cont. 

  1 * 1 + 0:    <exp> 

<exp> is the start symbol for this parse 
tree 
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Example cont. 

  1 * 1 + 0:    <exp> 

                    <factor> 

Use rule: <exp> ::=  <factor> 
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Example cont. 

  1 * 1 + 0:    <exp> 

                    <factor> 

           <bin>      *         <exp> 

Use rule:  <factor> ::=  <bin> *  <exp> 
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Example cont. 

  1 * 1 + 0:    <exp> 

                    <factor> 

           <bin>      *         <exp> 

              1         <factor>  +    <factor> 

Use rules:  <bin> ::= 1   and 
                  <exp> ::= <factor>  + 

<factor> 
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Example cont. 

  1 * 1 + 0:    <exp> 

                    <factor> 

           <bin>      *         <exp> 

              1         <factor>  +    <factor> 

                           <bin>            <bin> 

Use rule:  <factor> ::= <bin> 
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Example cont. 

  1 * 1 + 0:    <exp> 

                    <factor> 

           <bin>      *         <exp> 

              1         <factor>  +    <factor> 

                           <bin>            <bin> 

                               1                   0 
Use rules:  <bin> ::= 1 | 0 
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Example cont. 

  1 * 1 + 0:    <exp> 

                    <factor> 

           <bin>      *         <exp> 

              1         <factor>  +    <factor> 

                           <bin>            <bin> 

                               1                   0 
Fringe of tree is string generated by grammar 
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Your Turn: 1 * 0 + 0 * 1 
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Parse Tree Data Structures 

  Parse trees may be represented by OCaml 
datatypes 

  One datatype for each nonterminal 
  One constructor for each rule 
  Defined as mutually recursive collection of 

datatype declarations 
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Example 

  Recall grammar: 
<exp>  ::= <factor>  |  <factor> +  <factor> 
<factor>  ::=  <bin> |  <bin>  *  <exp> 
<bin> ::=  0  | 1 

  type exp = Factor2Exp of factor 
                   | Plus of factor * factor 
    and factor = Bin2Factor of bin  
                       | Mult of bin * exp 
    and bin = Zero | One 
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Example cont. 

  1 * 1 + 0:    <exp> 

                    <factor> 

           <bin>      *         <exp> 

              1         <factor>  +    <factor> 

                           <bin>            <bin> 

                               1                   0 
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Example cont. 

  Can be represented as 

Factor2Exp 
(Mult(One,   
          Plus(Bin2Factor One, 
                   Bin2Factor Zero))) 
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Ambiguous Grammars and Languages 

  A BNF grammar is ambiguous if its language 
contains strings for which there is more than 
one parse tree 

  If all BNF’s for a language are ambiguous 
then the language is inherently ambiguous 
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Example: Ambiguous Grammar 

  0 + 1 + 0 
                <Sum>                 <Sum> 

        <Sum> + <Sum>  <Sum> + <Sum> 

<Sum> + <Sum>  0         0   <Sum> + <Sum> 

     0             1                            1             0 
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Example 

  What is the result for: 
3 + 4 * 5 + 6 
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Example 

  What is the result for: 
3 + 4 * 5 + 6 

  Possible answers: 
     41 = ((3 + 4) * 5) + 6 
     47 = 3 + (4 * (5 + 6)) 
     29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6) 
     77 = (3 + 4) * (5 + 6) 
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Example 

  What is the value of: 
7 – 5 – 2 
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Example 

  What is the value of: 
7 – 5 – 2 

  Possible answers: 
  In Pascal, C++, SML assoc. left 
  7 – 5 – 2 = (7 – 5) – 2 = 0 
  In APL, associate to right 
  7 – 5 – 2 = 7 – (5 – 2) = 4 
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Two Major Sources of Ambiguity 

  Lack of determination of operator 
precedence 

  Lack of determination of operator 
assoicativity 

  Not the only sources of ambiguity 


