
10/25/12 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/25/12 2

General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
 regexp { action }
 | ...
 | regexp { action }
and entrypoint [arg1... argn] =

parse ...and ...
{ trailer }

10/25/12 3

Ocamllex Input

  header and trailer contain arbitrary
ocaml code put at top an bottom of
<filename>.ml

  let ident = regexp ... Introduces ident
for use in later regular expressions

10/25/12 4

Ocamllex Input

  <filename>.ml contains one lexing
function per entrypoint
  Name of function is name given for

entrypoint
  Each entry point becomes an Ocaml

function that takes n+1 arguments, the
extra implicit last argument being of type
Lexing.lexbuf

  arg1... argn are for use in action

10/25/12 5

Ocamllex Regular Expression

  Single quoted characters for letters:
‘a’

  _: (underscore) matches any letter
  Eof: special “end_of_file” marker
  Concatenation same as usual
  “string”: concatenation of sequence

of characters
  e1 | e2 : choice - what was e1 ∨ e2

10/25/12 6

Ocamllex Regular Expression

  [c1 - c2]: choice of any character
between first and second inclusive, as
determined by character codes

  [^c1 - c2]: choice of any character NOT
in set

  e*: same as before
  e+: same as e e*
  e?: option - was e1 ∨ ε

10/25/12 7

Ocamllex Regular Expression

  e1 # e2: the characters in e1 but not in
e2; e1 and e2 must describe just sets of
characters

  ident: abbreviation for earlier reg exp in
let ident = regexp

  e1 as id: binds the result of e1 to id to
be used in the associated action

10/25/12 8

Ocamllex Manual

  More details can be found at

http://caml.inria.fr/pub/docs/manual-ocaml/
manual026.html

10/25/12 9

Example : test.mll

{ type result = Int of int | Float of float |
String of string }

let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter +

10/25/12 10

Example : test.mll

rule main = parse
 (digits)'.'digits as f { Float (float_of_string f) }
 | digits as n { Int (int_of_string n) }
 | letters as s { String s}
 | _ { main lexbuf }
 { let newlexbuf = (Lexing.from_channel stdin) in
 print_string "Ready to lex.";
 print_newline ();
 main newlexbuf }

10/25/12 11

Example

#use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->

result = <fun>
Ready to lex.
hi there 234 5.2
- : result = String "hi"
What happened to the rest?!?

10/25/12 12

Example

let b = Lexing.from_channel stdin;;
main b;;
hi 673 there
- : result = String "hi"
main b;;
- : result = Int 673
main b;;
- : result = String "there"

10/25/12 13

Problem

  How to get lexer to look at more than the
first token at one time?

  Answer: action has to tell it to -- recursive
calls

  Side Benefit: can add “state” into lexing
  Note: already used this with the _ case

10/25/12 14

Example

rule main = parse
 (digits) '.' digits as f { Float

(float_of_string f) :: main lexbuf}
 | digits as n { Int (int_of_string n) ::

main lexbuf }
 | letters as s { String s :: main

lexbuf}
 | eof { [] }
 | _ { main lexbuf }

10/25/12 15

Example Results

Ready to lex.
hi there 234 5.2
- : result list = [String "hi"; String "there"; Int

234; Float 5.2]

Used Ctrl-d to send the end-of-file signal

10/25/12 16

Dealing with comments

First Attempt
let open_comment = "(*"
let close_comment = "*)"
rule main = parse
 (digits) '.' digits as f { Float (float_of_string

f) :: main lexbuf}
 | digits as n { Int (int_of_string n) ::

main lexbuf }
 | letters as s { String s :: main lexbuf}

10/25/12 17

Dealing with comments

 | open_comment { comment lexbuf}
 | eof { [] }
 | _ { main lexbuf }
and comment = parse
 close_comment { main lexbuf }
 | _ { comment lexbuf }

10/25/12 18

Dealing with nested comments

rule main = parse …
 | open_comment { comment 1 lexbuf}
 | eof { [] }
 | _ { main lexbuf }
and comment depth = parse
 open_comment { comment (depth+1)

lexbuf }
 | close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

10/25/12 19

Dealing with nested comments

rule main = parse
 (digits) '.' digits as f { Float (float_of_string f) ::

main lexbuf}
 | digits as n { Int (int_of_string n) :: main

lexbuf }
 | letters as s { String s :: main lexbuf}
 | open_comment { (comment 1 lexbuf}
 | eof { [] }
 | _ { main lexbuf }

10/25/12 20

Dealing with nested comments

and comment depth = parse
 open_comment { comment (depth+1) lexbuf }
 | close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

10/25/12 21

Types of Formal Language Descriptions

  Regular expressions, regular grammars
  Context-free grammars, BNF grammars,

syntax diagrams
  Finite state automata

  Whole family more of grammars and
automata – covered in automata theory

10/25/12 22

Sample Grammar

  Language: Parenthesized sums of 0’s and 1’s

  <Sum> ::= 0
  <Sum >::= 1
  <Sum> ::= <Sum> + <Sum>
  <Sum> ::= (<Sum>)

10/25/12 23

BNF Grammars

  Start with a set of characters, a,b,c,…
  We call these terminals

  Add a set of different characters, X,Y,Z,
…
  We call these nonterminals

  One special nonterminal S called start
symbol

10/25/12 24

BNF Grammars

  BNF rules (aka productions) have form
 X ::= y
 where X is any nonterminal and y is a string

of terminals and nonterminals
  BNF grammar is a set of BNF rules such that

every nonterminal appears on the left of
some rule

10/25/12 25

Sample Grammar

  Terminals: 0 1 + ()
  Nonterminals: <Sum>
  Start symbol = <Sum>

  <Sum> ::= 0
  <Sum >::= 1
  <Sum> ::= <Sum> + <Sum>
  <Sum> ::= (<Sum>)
  Can be abbreviated as
 <Sum> ::= 0 | 1
 | <Sum> + <Sum> | (<Sum>)

10/25/12 26

BNF Deriviations

  Given rules
X::= yZw and Z::=v

we may replace Z by v to say
X => yZw => yvw

  Sequence of such replacements called
derivation

  Derivation called right-most if always
replace the right-most non-terminal

10/25/12 27

BNF Derivations

  Start with the start symbol:

<Sum> =>

10/25/12 28

BNF Derivations

  Pick a non-terminal

<Sum> =>

10/25/12 29

  Pick a rule and substitute:
  <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

BNF Derivations

10/25/12 30

  Pick a non-terminal:

<Sum> => <Sum> + <Sum >

BNF Derivations

10/25/12 31

  Pick a rule and substitute:
  <Sum> ::= (<Sum>)

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>

BNF Derivations

10/25/12 32

  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>

BNF Derivations

10/25/12 33

  Pick a rule and substitute:
  <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>

BNF Derivations

10/25/12 34

  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>

BNF Derivations

10/25/12 35

  Pick a rule and substitute:
  <Sum >::= 1

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>

BNF Derivations

10/25/12 36

  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>

BNF Derivations

10/25/12 37

  Pick a rule and substitute:
  <Sum >::= 0

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) + 0

BNF Derivations

10/25/12 38

  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) + 0

BNF Derivations

10/25/12 39

  Pick a rule and substitute
  <Sum> ::= 0

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) 0
 => (0 + 1) + 0

BNF Derivations

10/25/12 40

  (0 + 1) + 0 is generated by grammar

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) + 0
 => (0 + 1) + 0

BNF Derivations

10/25/12 41

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> =>

10/25/12 42

BNF Semantics

  The meaning of a BNF grammar is the
set of all strings consisting only of
terminals that can be derived from the
Start symbol

10/25/12 43

Extended BNF Grammars

  Alternatives: allow rules of from X::=y|z
  Abbreviates X::= y, X::= z

  Options: X::=y[v]z
  Abbreviates X::=yvz, X::=yz

  Repetition: X::=y{v}*z
  Can be eliminated by adding new

nonterminal V and rules X::=yz, X::=yVz,
V::=v, V::=vV

10/25/12 44

Regular Grammars

  Subclass of BNF
  Only rules of form

<nonterminal>::=<terminal><nonterminal> or
<nonterminal>::=<terminal> or
<nonterminal>::=ε

  Defines same class of languages as regular
expressions

  Important for writing lexers (programs that
convert strings of characters into strings of
tokens)

10/25/12 45

Example

  Regular grammar:
<Balanced> ::= ε
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1<Balanced>
<ZeroAndMore> ::= 0<Balanced>

  Generates even length strings where every
initial substring of even length has same
number of 0’s as 1’s

10/25/12 46

  Graphical representation of derivation
  Each node labeled with either non-terminal

or terminal
  If node is labeled with a terminal, then it is a

leaf (no sub-trees)
  If node is labeled with a non-terminal, then

it has one branch for each character in the
right-hand side of rule used to substitute for
it

Parse Trees

10/25/12 47

Example

  Consider grammar:
 <exp> ::= <factor>
 | <factor> + <factor>
 <factor> ::= <bin>
 | <bin> * <exp>
 <bin> ::= 0 | 1

  Problem: Build parse tree for 1 * 1 + 0 as
an <exp>

10/25/12 48

Example cont.

  1 * 1 + 0: <exp>

<exp> is the start symbol for this parse
tree

10/25/12 49

Example cont.

  1 * 1 + 0: <exp>

 <factor>

Use rule: <exp> ::= <factor>

10/25/12 50

Example cont.

  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

Use rule: <factor> ::= <bin> * <exp>

10/25/12 51

Example cont.

  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

Use rules: <bin> ::= 1 and
 <exp> ::= <factor> +

<factor>

10/25/12 52

Example cont.

  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

Use rule: <factor> ::= <bin>

10/25/12 53

Example cont.

  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0
Use rules: <bin> ::= 1 | 0

10/25/12 54

Example cont.

  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0
Fringe of tree is string generated by grammar

10/25/12 55

Your Turn: 1 * 0 + 0 * 1

10/25/12 56

Parse Tree Data Structures

  Parse trees may be represented by OCaml
datatypes

  One datatype for each nonterminal
  One constructor for each rule
  Defined as mutually recursive collection of

datatype declarations

10/25/12 57

Example

  Recall grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

  type exp = Factor2Exp of factor
 | Plus of factor * factor
 and factor = Bin2Factor of bin
 | Mult of bin * exp
 and bin = Zero | One

10/25/12 58

Example cont.

  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0

10/25/12 59

Example cont.

  Can be represented as

Factor2Exp
(Mult(One,
 Plus(Bin2Factor One,
 Bin2Factor Zero)))

10/25/12 60

Ambiguous Grammars and Languages

  A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree

  If all BNF’s for a language are ambiguous
then the language is inherently ambiguous

10/25/12 61

Example: Ambiguous Grammar

  0 + 1 + 0
 <Sum> <Sum>

 <Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

10/25/12 62

Example

  What is the result for:
3 + 4 * 5 + 6

10/25/12 63

Example

  What is the result for:
3 + 4 * 5 + 6

  Possible answers:
  41 = ((3 + 4) * 5) + 6
  47 = 3 + (4 * (5 + 6))
  29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)
  77 = (3 + 4) * (5 + 6)

10/25/12 64

Example

  What is the value of:
7 – 5 – 2

10/25/12 65

Example

  What is the value of:
7 – 5 – 2

  Possible answers:
  In Pascal, C++, SML assoc. left
 7 – 5 – 2 = (7 – 5) – 2 = 0
  In APL, associate to right
 7 – 5 – 2 = 7 – (5 – 2) = 4

10/25/12 66

Two Major Sources of Ambiguity

  Lack of determination of operator
precedence

  Lack of determination of operator
assoicativity

  Not the only sources of ambiguity

