
10/22/12 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/22/12 2

Lexing and Parsing

  Converting strings to abstract syntax trees
done in two phases
  Lexing: Converting string (or streams of

characters) into lists (or streams) of
tokens (the “words” of the language)
  Specification Technique: Regular Expressions

  Parsing: Convert a list of tokens into an
abstract syntax tree
  Specification Technique: BNF Grammars

10/22/12 3

Formal Language Descriptions

  Regular expressions, regular grammars,
finite state automata

  Context-free grammars, BNF grammars,
syntax diagrams

  Whole family more of grammars and
automata – covered in automata theory

10/22/12 4

Grammars

  Grammars are formal descriptions of which
strings over a given character set are in a
particular language

  Language designers write grammar
  Language implementers use grammar to

know what programs to accept
  Language users use grammar to know how

to write legitimate programs

10/22/12 5

Regular Expressions - Review

  Start with a given character set –
a, b, c…

  Each character is a regular expression
  It represents the set of one string

containing just that character

10/22/12 6

Regular Expressions

  If x and y are regular expressions, then xy is
a regular expression
  It represents the set of all strings made from first

a string described by x then a string described by
y

If x={a,ab} and y={c,d} then xy ={ac,ad,abc,abd}.
  If x and y are regular expressions, then x∨y

is a regular expression
  It represents the set of strings described by either

x or y
 If x={a,ab} and y={c,d} then x ∨ y={a,ab,c,d}

10/22/12 7

Regular Expressions

  If x is a regular expression, then so is (x)
  It represents the same thing as x

  If x is a regular expression, then so is x*
  It represents strings made from concatenating

zero or more strings from x
If x = {a,ab}
then x* ={“”,a,ab,aa,aab,abab,aaa,aaab,…}

  ε
  It represents {“”}, set containing the empty string

10/22/12 8

Example Regular Expressions

  (0∨1)*1
  The set of all strings of 0’s and 1’s ending in 1,

{1, 01, 11,…}
  a*b(a*)

  The set of all strings of a’s and b’s with exactly
one b

  ((01) ∨(10))*
  You tell me

  Regular expressions (equivalently, regular
grammars) important for lexing, breaking
strings into recognized words

10/22/12 9

Example: Lexing

  Regular expressions good for describing
lexemes (words) in a programming language
  Identifier = (a ∨ b ∨ … ∨ z ∨ A ∨ B ∨ … ∨ Z) (a
∨ b ∨ … ∨ z ∨ A ∨ B ∨ … ∨ Z ∨ 0 ∨ 1 ∨ … ∨ 9)*

  Digit = (0 ∨ 1 ∨ … ∨ 9)
  Number = 0 ∨ (1 ∨ … ∨ 9)(0 ∨ … ∨ 9)* ∨

~ (1 ∨ … ∨ 9)(0 ∨ … ∨ 9)*
  Keywords: if = if, while = while,…

10/22/12 10

Implementing Regular Expressions

  Regular expressions reasonable way to
generate strings in language

  Not so good for recognizing when a
string is in language

  Problems with Regular Expressions
  which option to choose,
  how many repetitions to make

  Answer: finite state automata
  Should have covered this in CS373

10/22/12 11

Lexing

  Different syntactic categories of “words”:
tokens

Example:
  Convert sequence of characters into

sequence of strings, integers, and floating
point numbers.

  "asd 123 jkl 3.14" will become:
 [String "asd"; Int 123; String "jkl"; Float
3.14]

10/22/12 12

Lex, ocamllex

  Could write the reg exp, then translate to
DFA by hand
  A lot of work

  Better: Write program to take reg exp as
input and automatically generates automata

  Lex is such a program
  ocamllex version for ocaml

10/22/12 13

How to do it

 To use regular expressions to parse
our input we need:
 Some way to identify the input string

— call it a lexing buffer
 Set of regular expressions,
 Corresponding set of actions to take

when they are matched.

10/22/12 14

How to do it

  The lexer will take the regular expressions
and generate a state
machine.

  The state machine will take our lexing buffer
and apply the transitions...

  If we reach an accepting state from which
we can go no further, the machine will
perform the appropriate action.

10/22/12 15

Mechanics

  Put table of reg exp and corresponding
actions (written in ocaml) into a file
<filename>.mll

  Call
ocamllex <filename>.mll

  Produces Ocaml code for a lexical analyzer in
file <filename>.ml

10/22/12 16

Sample Input

rule main = parse
 ['0'-'9']+ { print_string "Int\n"}
 | ['0'-'9']+'.'['0'-'9']+ { print_string "Float\n"}
 | ['a'-'z']+ { print_string "String\n"}
 | _ { main lexbuf }
 {
 let newlexbuf = (Lexing.from_channel stdin) in
 print_string "Ready to lex.\n";
 main newlexbuf
}

10/22/12 17

General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
 regexp { action }
 | ...
 | regexp { action }
and entrypoint [arg1... argn] =

parse ...and ...
{ trailer }

10/22/12 18

Ocamllex Input

  header and trailer contain arbitrary
ocaml code put at top an bottom of
<filename>.ml

  let ident = regexp ... Introduces ident
for use in later regular expressions

10/22/12 19

Ocamllex Input

  <filename>.ml contains one lexing
function per entrypoint
  Name of function is name given for

entrypoint
  Each entry point becomes an Ocaml

function that takes n+1 arguments, the
extra implicit last argument being of type
Lexing.lexbuf

  arg1... argn are for use in action

10/22/12 20

Ocamllex Regular Expression

  Single quoted characters for letters:
‘a’

  _: (underscore) matches any letter
  Eof: special “end_of_file” marker
  Concatenation same as usual
  “string”: concatenation of sequence

of characters
  e1 | e2 : choice - what was e1 ∨ e2

10/22/12 21

Ocamllex Regular Expression

  [c1 - c2]: choice of any character
between first and second inclusive, as
determined by character codes

  [^c1 - c2]: choice of any character NOT
in set

  e*: same as before
  e+: same as e e*
  e?: option - was e1 ∨ ε

10/22/12 22

Ocamllex Regular Expression

  e1 # e2: the characters in e1 but not in
e2; e1 and e2 must describe just sets of
characters

  ident: abbreviation for earlier reg exp in
let ident = regexp

  e1 as id: binds the result of e1 to id to
be used in the associated action

10/22/12 23

Ocamllex Manual

  More details can be found at

http://caml.inria.fr/pub/docs/manual-ocaml/
manual026.html

10/22/12 24

Example : test.mll

{ type result = Int of int | Float of float |
String of string }

let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter +

10/22/12 25

Example : test.mll

rule main = parse
 (digits)'.'digits as f { Float (float_of_string f) }
 | digits as n { Int (int_of_string n) }
 | letters as s { String s}
 | _ { main lexbuf }
 { let newlexbuf = (Lexing.from_channel stdin) in
 print_string "Ready to lex.";
 print_newline ();
 main newlexbuf }

10/22/12 26

Example

#use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->

result = <fun>
Ready to lex.
hi there 234 5.2
- : result = String "hi"
What happened to the rest?!?

10/22/12 27

Example

let b = Lexing.from_channel stdin;;
main b;;
hi 673 there
- : result = String "hi"
main b;;
- : result = Int 673
main b;;
- : result = String "there"

10/22/12 28

Problem

  How to get lexer to look at more than the
first token at one time?

  Answer: action has to tell it to -- recursive
calls

  Side Benefit: can add “state” into lexing
  Note: already used this with the _ case

10/22/12 29

Example

rule main = parse
 (digits) '.' digits as f { Float

(float_of_string f) :: main lexbuf}
 | digits as n { Int (int_of_string n) ::

main lexbuf }
 | letters as s { String s :: main

lexbuf}
 | eof { [] }
 | _ { main lexbuf }

10/22/12 30

Example Results

Ready to lex.
hi there 234 5.2
- : result list = [String "hi"; String "there"; Int

234; Float 5.2]

Used Ctrl-d to send the end-of-file signal

10/22/12 31

Dealing with comments

First Attempt
let open_comment = "(*"
let close_comment = "*)"
rule main = parse
 (digits) '.' digits as f { Float (float_of_string

f) :: main lexbuf}
 | digits as n { Int (int_of_string n) ::

main lexbuf }
 | letters as s { String s :: main lexbuf}

10/22/12 32

Dealing with comments

 | open_comment { comment lexbuf}
 | eof { [] }
 | _ { main lexbuf }
and comment = parse
 close_comment { main lexbuf }
 | _ { comment lexbuf }

10/22/12 33

Dealing with nested comments

rule main = parse …
 | open_comment { comment 1 lexbuf}
 | eof { [] }
 | _ { main lexbuf }
and comment depth = parse
 open_comment { comment (depth+1)

lexbuf }
 | close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

10/22/12 34

Dealing with nested comments

rule main = parse
 (digits) '.' digits as f { Float (float_of_string f) ::

main lexbuf}
 | digits as n { Int (int_of_string n) :: main

lexbuf }
 | letters as s { String s :: main lexbuf}
 | open_comment { (comment 1 lexbuf}
 | eof { [] }
 | _ { main lexbuf }

10/22/12 35

Dealing with nested comments

and comment depth = parse
 open_comment { comment (depth+1) lexbuf }
 | close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

