
10/18/12 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/18/12 2

Unification Algorithm

  Let S = {(s1, t1), (s2, t2), …, (sn, tn)} be a
unification problem.

  Case S = { }: Unif(S) = Identity function
(i.e., no substitution)

  Case S = {(s, t)} ∪ S’: Four main steps

10/18/12 3

Unification Algorithm

  Delete: if s = t (they are the same term)
then Unif(S) = Unif(S’)

  Decompose: if s = f(q1, … , qm) and t
=f(r1, … , rm) (same f, same m!), then

 Unif(S) = Unif({(q1, r1), …, (qm, rm)} ∪ S’)
  Orient: if t = x is a variable, and s is not a

variable, Unif(S) = Unif ({(x,s)} ∪ S’)

10/18/12 4

Unification Algorithm

 Eliminate: if s = x is a variable, and
x does not occur in t (the occurs
check), then
 Let ϕ = x |→ t
 Let ψ = Unif(ϕ(S’))
 Unif(S) = {x |→ ψ(t)} o ψ

 Note: {x |→ a} o {y |→ b} =
{y |→ ({x |→ a}(b))} o {x |→ a} if y
not in a

10/18/12 5

Tricks for Efficient Unification

  Don’t return substitution, rather do it
incrementally

  Make substitution be constant time
  Requires implementation of terms to use

mutable structures (or possibly lazy
structures)

  We won’t discuss these

10/18/12 6

Example

  x,y,z variables, f,g constructors

  S = {(f(x), f(g(y,z))), (g(y,f(y)), x)}

10/18/12 7

Example

  x,y,z variables, f,g constructors
  S is nonempty

  S = {(f(x), f(g(y,z))), (g(y,f(y)), x)}

10/18/12 8

Example

  x,y,z variables, f,g constructors
  Pick a pair: (g(y,f(y)), x)

  S = {(f(x), f(g(y,z))), (g(y,f(y)), x)}

10/18/12 9

Example

  x,y,z variables, f,g constructors
  Pick a pair: (g(y,f(y))), x)
  Orient: (x, g(y,f(y)))
  S = {(f(x), f(g(y,z))), (g(y,f(y)), x)}
  -> {(f(x), f(g(y,z))), (x, g(y,f(y)))}

10/18/12 10

Example

  x,y,z variables, f,g constructors

  S -> {(f(x), f(g(y,z))), (x, g(y,f(y)))}

10/18/12 11

Example

  x,y,z variables, f,g constructors
  Pick a pair: (f(x), f(g(y,z)))

  S -> {(f(x), f(g(y,z))), (x, g(y,f(y)))}

10/18/12 12

Example

  x,y,z variables, f,g constructors
  Pick a pair: (f(x), f(g(y,z)))
  Decompose: (x, g(y,z))
  S -> {(f(x), f(g(y,z))), (x, g(y,f(y)))}
  -> {(x, g(y,z)), (x, g(y,f(y)))}

10/18/12 13

Example

  x,y,z variables, f,g constructors
  Pick a pair: (x, g(y,f(y)))
  Substitute: {x |-> g(y,f(y))}
  S -> {(x, g(y,z)), (x, g(y,f(y)))}
  -> {(g(y,f(y)), g(y,z))}

  With {x |-> g(y,f(y))}

10/18/12 14

Example

  x,y,z variables, f,g constructors
  Pick a pair: (g(y,f(y)), g(y,z))

  S -> {(g(y,f(y)), g(y,z))}

With {x |→ g(y,f(y))}

10/18/12 15

Example

  x,y,z variables, f,g constructors
  Pick a pair: (g(y,f(y)), g(y,z))
  Decompose: (y, y) and (f(y), z)
  S -> {(g(y,f(y)), g(y,z))}
  -> {(y, y), (f(y), z)}

With {x |→ g(y,f(y))}

10/18/12 16

Example

  x,y,z variables, f,g constructors
  Pick a pair: (y, y)

  S -> {(y, y), (f(y), z)}

With {x |→ g(y,f(y))}

10/18/12 17

Example

  x,y,z variables, f,g constructors
  Pick a pair: (y, y)
  Delete
  S -> {(y, y), (f(y), z)}
  -> {(f(y), z)}

With {x |→ g(y,f(y))}

10/18/12 18

Example

  x,y,z variables, f,g constructors
  Pick a pair: (f(y), z)

  S -> {(f(y), z)}

With {x |→ g(y,f(y))}

10/18/12 19

Example

  x,y,z variables, f,g constructors
  Pick a pair: (f(y), z)
  Orient: (z, f(y))
  S -> {(f(y), z)}
  -> {(z, f(y))}

With {x |→ g(y,f(y))}

10/18/12 20

Example

  x,y,z variables, f,g constructors
  Pick a pair: (z, f(y))

  S -> {(z, f(y))}

With {x |→ g(y,f(y))}

10/18/12 21

Example

  x,y,z variables, f,g constructors
  Pick a pair: (z, f(y))
  Eliminate: {z|-> f(y)}
  S -> {(z, f(y))}
  -> { }

With {x |→ {z |→ f(y)} (g(y,f(y))) }
 o {z |→ f(y)}

10/18/12 22

Example

  x,y,z variables, f,g constructors
  Pick a pair: (z, f(y))
  Eliminate: {z|-> f(y)}
  S -> {(z, f(y))}
  -> { }

With {x |→ g(y,f(y))} o {(z |→ f(y))}

10/18/12 23

Example

S = {(f(x), f(g(y,z))), (g(y,f(y)),x)}
Solved by {x |→ g(y,f(y))} o {(z |→ f(y))}

f(g(y,f(y))) = f(g(y,f(y)))
 x z
and

 g(y,f(y)) = g(y,f(y))
 x

10/18/12 24

Example of Failure: Decompose

  S = {(f(x,g(y)), f(h(y),x))}
  Decompose: (f(x,g(y)), f(h(y),x))
  S -> {(x,h(y)), (g(y),x)}
  Orient: (g(y),x)
  S -> {(x,h(y)), (x,g(y))}
  Eliminate: (x,h(y))
  S -> {(h(y), g(y))} with {x |→ h(y)}
  No rule to apply! Decompose fails!

10/18/12 25

Example of Failure: Occurs Check

  S = {(f(x,g(x)), f(h(x),x))}
  Decompose: (f(x,g(x)), f(h(x),x))
  S -> {(x,h(x)), (g(x),x)}
  Orient: (g(y),x)
  S -> {(x,h(x)), (x,g(x))}
  No rules apply.

10/18/12 26

Where We Are Going

  We want to turn strings (code) into
computer instructions

  Done in phases
  Turn strings into abstract syntax trees

(parse)
  Translate abstract syntax trees into

executable instructions (interpret or compile)

Major Phases of a Compiler

Source Program
Lex

Tokens
Parse

Abstract Syntax
Semantic
Analysis

Symbol Table
Translate

Intermediate
Representation

Modified from “Modern Compiler Implementation in ML”, by Andrew Appel

Instruction
Selection

Optimized Machine-Specific
Assembly Language

Optimize

Unoptimized Machine-
Specific Assembly Language

Emit code

Assembler

Relocatable
 Object Code

Assembly Language

Linker
Machine

Code

Optimize
Optimized IR

10/18/12 28

Meta-discourse

  Language Syntax and Semantics
  Syntax
 - Regular Expressions, DFSAs and NDFSAs
 - Grammars
  Semantics
 - Natural Semantics
 - Transition Semantics

10/18/12 29

Language Syntax

  Syntax is the description of which strings of
symbols are meaningful expressions in a
language

  It takes more than syntax to understand a
language; need meaning (semantics) too

  Syntax is the entry point

10/18/12 30

Syntax of English Language

  Pattern 1

  Pattern 2

10/18/12 31

Elements of Syntax

  Character set – previously always ASCII,
now often 64 character sets

  Keywords – usually reserved
  Special constants – cannot be assigned to
  Identifiers – can be assigned to
  Operator symbols
  Delimiters (parenthesis, braces, brackets)
  Blanks (aka white space)

10/18/12 32

Elements of Syntax

  Expressions
 if ... then begin ... ; ... end else begin ... ; ... end

  Type expressions
 typexpr1 -> typexpr2
  Declarations (in functional languages)
 let pattern1 = expr1 in expr
  Statements (in imperative languages)
 a = b + c
  Subprograms
 let pattern1 = let rec inner = … in expr

10/18/12 33

Elements of Syntax

  Modules
  Interfaces
  Classes (for object-oriented languages)

10/18/12 34

Lexing and Parsing

  Converting strings to abstract syntax trees
done in two phases
  Lexing: Converting string (or streams of

characters) into lists (or streams) of
tokens (the “words” of the language)
  Specification Technique: Regular Expressions

  Parsing: Convert a list of tokens into an
abstract syntax tree
  Specification Technique: BNF Grammars

10/18/12 35

Formal Language Descriptions

  Regular expressions, regular grammars,
finite state automata

  Context-free grammars, BNF grammars,
syntax diagrams

  Whole family more of grammars and
automata – covered in automata theory

10/18/12 36

Grammars

  Grammars are formal descriptions of which
strings over a given character set are in a
particular language

  Language designers write grammar
  Language implementers use grammar to

know what programs to accept
  Language users use grammar to know how

to write legitimate programs

10/18/12 37

Regular Expressions - Review

  Start with a given character set –
a, b, c…

  Each character is a regular expression
  It represents the set of one string

containing just that character

10/18/12 38

Regular Expressions

  If x and y are regular expressions, then xy is
a regular expression
  It represents the set of all strings made from first

a string described by x then a string described by
y

If x={a,ab} and y={c,d} then xy ={ac,ad,abc,abd}.
  If x and y are regular expressions, then x∨y

is a regular expression
  It represents the set of strings described by either

x or y
 If x={a,ab} and y={c,d} then x ∨ y={a,ab,c,d}

10/18/12 39

Regular Expressions

  If x is a regular expression, then so is (x)
  It represents the same thing as x

  If x is a regular expression, then so is x*
  It represents strings made from concatenating

zero or more strings from x
If x = {a,ab}
then x* ={“”,a,ab,aa,aab,abab,aaa,aaab,…}

  ε
  It represents {“”}, set containing the empty string

10/18/12 40

Example Regular Expressions

  (0∨1)*1
  The set of all strings of 0’s and 1’s ending in 1,

{1, 01, 11,…}
  a*b(a*)

  The set of all strings of a’s and b’s with exactly
one b

  ((01) ∨(10))*
  You tell me

  Regular expressions (equivalently, regular
grammars) important for lexing, breaking
strings into recognized words

10/18/12 41

Example: Lexing

  Regular expressions good for describing
lexemes (words) in a programming language
  Identifier = (a ∨ b ∨ … ∨ z ∨ A ∨ B ∨ … ∨ Z) (a
∨ b ∨ … ∨ z ∨ A ∨ B ∨ … ∨ Z ∨ 0 ∨ 1 ∨ … ∨ 9)*

  Digit = (0 ∨ 1 ∨ … ∨ 9)
  Number = 0 ∨ (1 ∨ … ∨ 9)(0 ∨ … ∨ 9)* ∨

~ (1 ∨ … ∨ 9)(0 ∨ … ∨ 9)*
  Keywords: if = if, while = while,…

10/18/12 42

Implementing Regular Expressions

  Regular expressions reasonable way to
generate strings in language

  Not so good for recognizing when a
string is in language

  Problems with Regular Expressions
  which option to choose,
  how many repetitions to make

  Answer: finite state automata
  Should have covered this in CS373

10/18/12 43

Lexing

  Different syntactic categories of “words”:
tokens

Example:
  Convert sequence of characters into

sequence of strings, integers, and floating
point numbers.

  "asd 123 jkl 3.14" will become:
 [String "asd"; Int 123; String "jkl"; Float
3.14]

10/18/12 44

Lex, ocamllex

  Could write the reg exp, then translate to
DFA by hand
  A lot of work

  Better: Write program to take reg exp as
input and automatically generates automata

  Lex is such a program
  ocamllex version for ocaml

10/18/12 45

How to do it

 To use regular expressions to parse
our input we need:
 Some way to identify the input string

— call it a lexing buffer
 Set of regular expressions,
 Corresponding set of actions to take

when they are matched.

10/18/12 46

How to do it

  The lexer will take the regular expressions
and generate a state
machine.

  The state machine will take our lexing buffer
and apply the transitions...

  If we reach an accepting state from which
we can go no further, the machine will
perform the appropriate action.

10/18/12 47

Mechanics

  Put table of reg exp and corresponding
actions (written in ocaml) into a file
<filename>.mll

  Call
ocamllex <filename>.mll

  Produces Ocaml code for a lexical analyzer in
file <filename>.ml

10/18/12 48

Sample Input

rule main = parse
 ['0'-'9']+ { print_string "Int\n"}
 | ['0'-'9']+'.'['0'-'9']+ { print_string "Float\n"}
 | ['a'-'z']+ { print_string "String\n"}
 | _ { main lexbuf }
 {
 let newlexbuf = (Lexing.from_channel stdin) in
 print_string "Ready to lex.\n";
 main newlexbuf
}

10/18/12 49

General Input

{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
 regexp { action }
 | ...
 | regexp { action }
and entrypoint [arg1... argn] =

parse ...and ...
{ trailer }

10/18/12 50

Ocamllex Input

  header and trailer contain arbitrary
ocaml code put at top an bottom of
<filename>.ml

  let ident = regexp ... Introduces ident
for use in later regular expressions

10/18/12 51

Ocamllex Input

  <filename>.ml contains one lexing
function per entrypoint
  Name of function is name given for

entrypoint
  Each entry point becomes an Ocaml

function that takes n+1 arguments, the
extra implicit last argument being of type
Lexing.lexbuf

  arg1... argn are for use in action

10/18/12 52

Ocamllex Regular Expression

  Single quoted characters for letters:
‘a’

  _: (underscore) matches any letter
  Eof: special “end_of_file” marker
  Concatenation same as usual
  “string”: concatenation of sequence

of characters
  e1 | e2 : choice - what was e1 ∨ e2

10/18/12 53

Ocamllex Regular Expression

  [c1 - c2]: choice of any character
between first and second inclusive, as
determined by character codes

  [^c1 - c2]: choice of any character NOT
in set

  e*: same as before
  e+: same as e e*
  e?: option - was e1 ∨ ε

10/18/12 54

Ocamllex Regular Expression

  e1 # e2: the characters in e1 but not in
e2; e1 and e2 must describe just sets of
characters

  ident: abbreviation for earlier reg exp in
let ident = regexp

  e1 as id: binds the result of e1 to id to
be used in the associated action

10/18/12 55

Ocamllex Manual

  More details can be found at

http://caml.inria.fr/pub/docs/manual-ocaml/
manual026.html

10/18/12 56

Example : test.mll

{ type result = Int of int | Float of float |
String of string }

let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter +

10/18/12 57

Example : test.mll

rule main = parse
 (digits)'.'digits as f { Float (float_of_string f) }
 | digits as n { Int (int_of_string n) }
 | letters as s { String s}
 | _ { main lexbuf }
 { let newlexbuf = (Lexing.from_channel stdin) in
 print_string "Ready to lex.";
 print_newline ();
 main newlexbuf }

10/18/12 58

Example

#use "test.ml";;
…
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->

result = <fun>
Ready to lex.
hi there 234 5.2
- : result = String "hi"
What happened to the rest?!?

10/18/12 59

Example

let b = Lexing.from_channel stdin;;
main b;;
hi 673 there
- : result = String "hi"
main b;;
- : result = Int 673
main b;;
- : result = String "there"

10/18/12 60

Problem

  How to get lexer to look at more than the
first token at one time?

  Answer: action has to tell it to -- recursive
calls

  Side Benefit: can add “state” into lexing
  Note: already used this with the _ case

10/18/12 61

Example

rule main = parse
 (digits) '.' digits as f { Float

(float_of_string f) :: main lexbuf}
 | digits as n { Int (int_of_string n) ::

main lexbuf }
 | letters as s { String s :: main

lexbuf}
 | eof { [] }
 | _ { main lexbuf }

10/18/12 62

Example Results

Ready to lex.
hi there 234 5.2
- : result list = [String "hi"; String "there"; Int

234; Float 5.2]

Used Ctrl-d to send the end-of-file signal

10/18/12 63

Dealing with comments

First Attempt
let open_comment = "(*"
let close_comment = "*)"
rule main = parse
 (digits) '.' digits as f { Float (float_of_string

f) :: main lexbuf}
 | digits as n { Int (int_of_string n) ::

main lexbuf }
 | letters as s { String s :: main lexbuf}

10/18/12 64

Dealing with comments

 | open_comment { comment lexbuf}
 | eof { [] }
 | _ { main lexbuf }
and comment = parse
 close_comment { main lexbuf }
 | _ { comment lexbuf }

10/18/12 65

Dealing with nested comments

rule main = parse …
 | open_comment { comment 1 lexbuf}
 | eof { [] }
 | _ { main lexbuf }
and comment depth = parse
 open_comment { comment (depth+1)

lexbuf }
 | close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

10/18/12 66

Dealing with nested comments

rule main = parse
 (digits) '.' digits as f { Float (float_of_string f) ::

main lexbuf}
 | digits as n { Int (int_of_string n) :: main

lexbuf }
 | letters as s { String s :: main lexbuf}
 | open_comment { (comment 1 lexbuf}
 | eof { [] }
 | _ { main lexbuf }

10/18/12 67

Dealing with nested comments

and comment depth = parse
 open_comment { comment (depth+1) lexbuf }
 | close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }

