
10/18/12 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/18/12 2

Regular Expressions

  Start with a given character set –
a, b, c…

  Each character is a regular expression
  It represents the set of one string

containing just that character

10/18/12 3

Regular Expressions

  If x and y are regular expressions, then xy is
a regular expression
  It represents the set of all strings made from first

a string described by x then a string described by
y

If x={a,ab} and y={c,d} then xy ={ac,ad,abc,abd}.
  If x and y are regular expressions, then x∨y

is a regular expression
  It represents the set of strings described by either

x or y
 If x={a,ab} and y={c,d} then x ∨ y={a,ab,c,d}

10/18/12 4

Regular Expressions

  If x is a regular expression, then so is (x)
  It represents the same thing as x

  If x is a regular expression, then so is x*
  It represents strings made from concatenating

zero or more strings from x
If x = {a,ab}
then x* ={“”,a,ab,aa,aab,abab,aaa,aaab,…}

  ε
  It represents {“”}, set containing the empty string

10/18/12 5

Example Regular Expressions

  (0∨1)*1
  The set of all strings of 0’s and 1’s ending in 1,

{1, 01, 11,…}
  a*b(a*)

  The set of all strings of a’s and b’s with exactly
one b

  ((01) ∨(10))*
  You tell me

  Regular expressions (equivalently, regular
grammars) important for lexing, breaking
strings into recognized words

10/18/12 6

Example: Lexing

  Regular expressions good for describing
lexemes (words) in a programming language
  Identifier = (a ∨ b ∨ … ∨ z ∨ A ∨ B ∨ … ∨ Z) (a
∨ b ∨ … ∨ z ∨ A ∨ B ∨ … ∨ Z ∨ 0 ∨ 1 ∨ … ∨ 9)*

  Digit = (0 ∨ 1 ∨ … ∨ 9)
  Number = 0 ∨ (1 ∨ … ∨ 9)(0 ∨ … ∨ 9)* ∨

~ (1 ∨ … ∨ 9)(0 ∨ … ∨ 9)*
  Keywords: if = if, while = while,…

10/18/12 7

Implementing Regular Expressions

  Regular expressions reasonable way to
generate strings in language

  Not so good for recognizing when a
string is in language

  Problems with Regular Expressions
  which option to choose,
  how many repetitions to make

  Answer: finite state automata

10/18/12 8

Finite State Automata

  A finite state automata over an alphabet is:
  a directed graph
  a finite set of states defined by the nodes
  edges are labeled with elements of alphabet, or

empty string; they define state transition
  some nodes (or states), marked as final
  one node marked as start state

  Syntax of FSA

10/18/12 9

Example FSA

0 1 1

0
Start State

Final State

Final State

1

0

10

10/18/12 10

Deterministic FSA’s

  If FSA has for every state exactly one edge
for each letter in alphabet then FSA is
deterministic
  No edge labeled with ε

  In general FSA in non-deterministic.
  NFSA also allows edges labeled by ε

  Deterministic FSA special kind of non-
deterministic FSA

10/18/12 11

DFSA Language Recognition

  Think of a DFSA as a board game; DFSA is
board

  You have string as a deck of cards; one
letter on each card

  Start by placing a disc on the start state

10/18/12 12

DFSA Language Recognition

  Move the disc from one state to next along
the edge labeled the same as top card in
deck; discard top card

  When you run out of cards,
  if you are in final state, you win; string is

in language
  if you are not in a final state, you lose;

string is not in language

10/18/12 13

DFSA Language Recognition -Summary

  Given a string over alphabet
  Start at start state
  Move over edge labeled with first letter to

new state
  Remove first letter from string
  Repeat until string gone
  If end in final state then string in language

  Semantics of FSA

10/18/12 14

Example DFSA

  Regular expression: (0 ∨ 1)* 1
  Deterministic FSA

0 1

1

0

10/18/12 15

Example DFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1

0 1

1

0

10/18/12 16

Example DFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1

0 1

1

0

10/18/12 17

Example DFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1

0 1

1

0

10/18/12 18

Example DFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1

0 1

1

0

10/18/12 19

Example DFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1

0 1

1

0

10/18/12 20

Example DFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1

0 1

1

0

10/18/12 21

Example DFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1

0 1

1

0

10/18/12 22

  NFSA generalize DFSA in two ways:
  Include edges labeled by ε

  Allows process to non-deterministically
change state

Non-deterministic FSA’s

0 1
ε

0

10/18/12 23

  Each state can have zero, one or more edges
labeled by each letter
  Given a letter, non-deterministically choose

an edge to use

 …

Non-deterministic FSA’s

0
0

10/18/12 24

NFSA Language Recognition

  Play the same game as with DFSA
  Free move: move across an edge with

empty string label without discarding card
  When you run out of letters, if you are in

final state, you win; string is in language
  You can take one or more moves back and

try again
  If have tried all possible paths without

success, then you lose; string not in
language

10/18/12 25

Example NFSA

  Regular expression: (0 ∨ 1)* 1
  Non-deterministic FSA

0

1

1

10/18/12 26

Example NFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1

0

1

1

10/18/12 27

Example NFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1

0

1

1

10/18/12 28

Example NFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1

0

1

1

10/18/12 29

Example NFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1
  Guess

0

1

1

10/18/12 30

Example NFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1
  Backtrack

0

1

1

10/18/12 31

Example NFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1
  Guess again

0

1

1

10/18/12 32

Example NFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1
  Guess

0

1

1

10/18/12 33

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1
  Backtrack

Example NFSA

0

1

1

10/18/12 34

Example NFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1
  Guess again

0

1

1

10/18/12 35

Example NFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1

0

1

1

10/18/12 36

Example NFSA

  Regular expression: (0 ∨ 1)* 1
  Accepts string 0 1 1 0 1
  Guess (Hurray!!)

0

1

1

10/18/12 37

Rule Based Execution

  Search
  When stuck backtrack to last point with

choices remaining
  Executing the NFSA in last example was

example of rule based execution
  FSA’s are rule-based programs; transitions

between states (labeled edges) are rules; set
of all FSA’s is programming language

10/18/12 38

Rule Based Execution

  Search
  When stuck backtrack to last point with

choices remaining

  FSA’s are rule-based programs; transitions
between states (labeled edges) are rules; set
of all FSA’s is programming language

