Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

4

Format of Type Judgments

A type judgement has the form

$$\Gamma$$
 |- exp : τ

- \blacksquare Γ is a typing environment
 - Supplies the types of variables and functions
 - Γ is a list of the form $[x:\sigma,\ldots]$
- exp is a program expression
- \bullet τ is a type to be assigned to exp
- |- pronounced "turnstyle", or "entails" (or "satisfies")

Axioms - Constants

|-n: int (assuming n is an integer constant)

|- true : bool

|- false : bool

- These rules are true with any typing environment
- n is a meta-variable

Axioms – Variables (Monomorphic Rule)

Notation: Let $\Gamma(x) = \sigma$ if $x : \sigma \in \Gamma$ and there is no $x : \tau$ to the left of $x : \sigma$ in Γ

Variable axiom:

$$\overline{\Gamma \mid -x:\sigma}$$
 if $\Gamma(x)=\sigma$

Simple Rules - Arithmetic

Primitive operators (
$$\oplus \in \{+, -, *, ...\}$$
):
$$\frac{\Gamma \mid -e_1 : \tau \quad \Gamma \mid -e_2 : \tau \quad (\oplus) : \tau \rightarrow \tau \rightarrow \tau}{\Gamma \mid -e_1 \oplus e_2 : \tau}$$
 Relations ($^{\sim} \in \{<, >, =, <=, >= \}$):
$$\frac{\Gamma \mid -e_1 : \tau \quad \Gamma \mid -e_2 : \tau}{\Gamma \mid -e_1 \quad ^{\sim} e_2 : \text{bool}}$$

For the moment, think τ is int

Simple Rules - Booleans

Connectives

$$\Gamma \mid -e_1 : bool$$
 $\Gamma \mid -e_2 : bool$ $\Gamma \mid -e_1 \&\& e_2 : bool$

$$\Gamma \mid -e_1 : bool$$
 $\Gamma \mid -e_2 : bool$ $\Gamma \mid -e_1 \mid \mid e_2 : bool$

4

Type Variables in Rules

If_then_else rule:

$$\Gamma \mid -e_1 : bool \quad \Gamma \mid -e_2 : \tau \quad \Gamma \mid -e_3 : \tau$$
 $\Gamma \mid -(if e_1 then e_2 else e_3) : \tau$

- τ is a type variable (meta-variable)
- Can take any type at all
- All instances in a rule application must get same type
- Then branch, else branch and if_then_else must all have same type

Function Application

Application rule:

$$\frac{\Gamma \mid -e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \mid -e_2 : \tau_1}{\Gamma \mid -(e_1 e_2) : \tau_2}$$

If you have a function expression e_1 of type $\tau_1 \rightarrow \tau_2$ applied to an argument of type τ_1 , the resulting expression has type τ_2

Fun Rule

- Rules describe types, but also how the environment Γ may change
- Can only do what rule allows!
- fun rule:

$$[x:\tau_1] + \Gamma \mid -e:\tau_2$$

$$\Gamma \mid -\text{fun } x -> e:\tau_1 \to \tau_2$$

Fun Examples

[y:int] +
$$\Gamma$$
 |- y + 3:int Γ |- fun y -> y + 3:int \rightarrow int

```
[f:int → bool] + \Gamma |- f 2 :: [true] : bool list

\Gamma |- (fun f -> f 2 :: [true])

: (int → bool) → bool list
```


(Monomorphic) Let and Let Rec

let rule:

$$\Gamma \mid -e_1 : \tau_1 \quad [x : \tau_1] + \Gamma \mid -e_2 : \tau_2$$

$$\Gamma \mid -(\text{let } x = e_1 \text{ in } e_2) : \tau_2$$

let rec rule:

[x:
$$\tau_1$$
] + Γ |- e_1 : τ_1 [x: τ_1] + Γ |- e_2 : τ_2
 Γ |- (let rec x = e_1 in e_2): τ_2

Example

Which rule do we apply?

|- (let rec one = 1 :: one in let x = 2 in fun $y \rightarrow (x :: y :: one)$) : int \rightarrow int list

Example

```
(2) [one: int list] |-
Let rec rule:
                            (let x = 2 in
                        fun y -> (x :: y :: one))
[one : int list] |-
(1 :: one) : int list
                        : int \rightarrow int list
 |- (let rec one = 1 :: one in
    let x = 2 in
      fun y -> (x :: y :: one)): int \rightarrow int list
```

Which rule?

[one : int list] |- (1 :: one) : int list

Application

Constants Rule

Constants Rule

```
[one: int list] |-

(::): int \rightarrow int list\rightarrow int list 1: int

[one: int list] |-

[one: int list] |-
```

Rule for variables

[one: int list] |- one:int list

Constant

```
[x:int; one : int list] |-
                             fun y ->
                                (x :: y :: one))
[one: int list] |-2:int : int \rightarrow int list
```

```
[one: int list] |- (let x = 2 in
   fun y -> (x :: y :: one)) : int \rightarrow int list
```

?

```
[x:int; one : int list] |- fun y -> (x :: y :: one))
: int \rightarrow int list
```

```
[y:int; x:int; one : int list] [-(x :: y :: one) : int list]

[x:int; one : int list] [-(x :: y :: one) : int = [-(x :: y :: one)]

: int [-(x :: y :: one)]
```

Constant

Variable

```
Pf of 6 [y/x] Variable

[y:int; ...] |- ((::) y) [...; one: int list] |-
:int list→ int list one: int list

[y:int; x:int; one : int list] |- (y :: one) : int list
```


Curry - Howard Isomorphism

- Type Systems are logics; logics are type systems
- Types are propositions; propositions are types
- Terms are proofs; proofs are terms
- Functions space arrow corresponds to implication; application corresponds to modus ponens

Curry - Howard Isomorphism

Modus Ponens

$$\frac{A \Rightarrow B \quad A}{B}$$

Application

$$\Gamma \mid -e_1 : \alpha \rightarrow \beta \quad \Gamma \mid -e_2 : \alpha$$

$$\Gamma \mid -(e_1 e_2) : \beta$$

Mia Copa

- The above system can't handle polymorphism as in OCAML
- No type variables in type language (only metavariable in the logic)
- Would need:
 - Object level type variables and some kind of type quantification
 - let and let rec rules to introduce polymorphism
 - Explicit rule to eliminate (instantiate) polymorphism