Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

10/18/12

Format of Type Judgments

• A *type judgement* has the form

$$\Gamma$$
 |- exp : τ

- Γ is a typing environment
 - Supplies the types of variables and functions
 - Γ is a list of the form [$x : \sigma, \dots$]
- exp is a program expression
- τ is a type to be assigned to exp
- |- pronounced "turnstyle", or "entails" (or "satisfies")

10/18/12 2

Axioms - Constants

|-n: int (assuming n is an integer constant)

|- true : bool | - false : bool

- These rules are true with any typing environment
- n is a meta-variable

10/18/12

Axioms – Variables (Monomorphic Rule)

Notation: Let $\Gamma(x) = \sigma$ if $x : \sigma \in \Gamma$ and there is no $x : \tau$ to the left of $x : \sigma$ in Γ

Variable axiom:

$$\overline{\Gamma \mid -x : \sigma} \quad \text{if } \Gamma(x) = \sigma$$

10/18/12 4

Simple Rules - Arithmetic

Primitive operators ($\oplus \in \{+, -, *, ...\}$):

$$\frac{\Gamma \mid -e_1:\tau \quad \Gamma \mid -e_2:\tau \quad (\oplus):\tau \to \tau \to \tau}{\Gamma \mid -e_1 \oplus e_2:\tau}$$

Relations ($\sim \in \{ <, >, =, <=, >= \}$):

$$\frac{\Gamma \mid -e_1 : \tau \qquad \Gamma \mid -e_2 : \tau}{\Gamma \mid -e_1 \sim e_2 : \text{bool}}$$

For the moment, think $\boldsymbol{\tau}$ is int

10/18/12

Simple Rules - Booleans

Connectives

$$\frac{\Gamma \mid -e_1 : \mathsf{bool} \qquad \Gamma \mid -e_2 : \mathsf{bool}}{\Gamma \mid -e_1 \&\& e_2 : \mathsf{bool}}$$

$$\frac{\Gamma \mid -e_1 : \mathsf{bool} \quad \Gamma \mid -e_2 : \mathsf{bool}}{\Gamma \mid -e_1 \mid \mid e_2 : \mathsf{bool}}$$

10/18/12 6

Type Variables in Rules

If_then_else rule:

$$\frac{\Gamma \mid -e_1 : \text{bool} \quad \Gamma \mid -e_2 : \tau \quad \Gamma \mid -e_3 : \tau}{\Gamma \mid -\text{ (if } e_1 \text{ then } e_2 \text{ else } e_3) : \tau}$$

- τ is a type variable (meta-variable)
- Can take any type at all
- All instances in a rule application must get same type
- Then branch, else branch and if_then_else must all have same type

10/18/12

Function Application

Application rule:

$$\frac{\Gamma \mid -e_1: \tau_1 \rightarrow \tau_2 \quad \Gamma \mid -e_2: \tau_1}{\Gamma \mid -(e_1 e_2): \tau_2}$$

• If you have a function expression e_1 of type $\tau_1 \rightarrow \tau_2$ applied to an argument of type τ_1 , the resulting expression has type τ_2

10/18/12 8

Fun Rule

- Rules describe types, but also how the environment Γ may change
- Can only do what rule allows!
- fun rule:

$$\frac{[x:\tau_1] + \Gamma \mid -e:\tau_2}{\Gamma \mid -\text{fun } x -> e:\tau_1 \to \tau_2}$$

10/18/12

Fun Examples

[f: int → bool] +
$$\Gamma$$
 |- f 2 :: [true] : bool list
 Γ |- (fun f -> f 2 :: [true])
: (int → bool) → bool list

10/18/12 10

(Monomorphic) Let and Let Rec

let rule:

$$\frac{\Gamma \mid -e_1 : \tau_1 \quad [x : \tau_1] + \Gamma \mid -e_2 : \tau_2}{\Gamma \mid -(\text{let } x = e_1 \text{ in } e_2) : \tau_2}$$

let rec rule:

$$\frac{[x: \tau_1] + \Gamma - e_1:\tau_1[x: \tau_1] + \Gamma - e_2:\tau_2}{\Gamma - (\text{let rec } x = e_1 \text{ in } e_2):\tau_2}$$

10/18/12

4

11

Example

Which rule do we apply?

?
|- (let rec one = 1 :: one in let x = 2 in fun y -> (x :: y :: one)) : int
$$\rightarrow$$
 int list

10/18/12 12

Example

10/18/12 13

Proof of 1

Which rule?

[one : int list] |- (1 :: one) : int list

10/18/12 14

Proof of 1

Application

3

4

[one : int list] |- [one : int list] |- ((::) 1): int list \rightarrow int list one : int list [one : int list] |- (1 :: one) : int list

10/18/12

Proof of 3

Constants Rule Constants Rule

[one : int list] |- [one : int list] |- (::) : int \rightarrow int list \rightarrow int list \rightarrow int list |- ((::) 1) : int list \rightarrow int list

10/18/12 16

10/18/12

Proof of 4

Rule for variables

[one: int list] |- one:int list

15

Proof of 2

(5) [x:int; one : int list] |-

Constant fun y ->

(x :: y :: one))

[one : int list] |- 2:int : int → int list [one : int list] |- (let x = 2 in

fun y -> (x :: y :: one)) : int \rightarrow int list

10/18/12

17

8/12 18

Proof of 5

?

[x:int; one : int list] |- fun y -> (x :: y :: one)) : int \rightarrow int list

10/18/12

?

[y:int; x:int; one : int list] |- (x :: y :: one) : int list [x:int; one : int list] |- fun y -> (x :: y :: one))

: int → int list

10/18/12 20

Proof of 5

6

(7)

[y:int; x:int; one : int list] |- [y:int; x:int; one : int list] |-

((::) x):int list \rightarrow int list(y :: one) : int list

[y:int; x:int; one : int list] |-(x :: y :: one) : int list

[x:int; one : int list] \mid - fun y -> (x :: y :: one))

: int \rightarrow int list

10/18/12 21

19

Proof of 6

Constant

Variable

[...] |- (::)

: int→ int list→ int list [...; x:int;...] |- x:int [y:int; x:int; one : int list] |- ((::) x)

:int list→ int list

10/18/12

Proof of 7

Pf of 6 [y/x]

Variable

:int list→ int list one: int list

[y:int; x:int; one : int list] |- (y :: one) : int list

10/18/12

23

- Type Systems are logics; logics are type systems
- Types are propositions; propositions are types
- Terms are proofs; proofs are terms
- Functions space arrow corresponds to implication; application corresponds to modus ponens

10/18/12

24

22

Curry - Howard Isomorphism

Modus Ponens

$$\frac{A \Rightarrow B \quad A}{B}$$

Application

$$\frac{\Gamma \mid -e_1 : \alpha \to \beta \quad \Gamma \mid -e_2 : \alpha}{\Gamma \mid -(e_1 e_2) : \beta}$$

10/18/12

25

Mia Copa

- The above system can't handle polymorphism as in OCAML
- No type variables in type language (only metavariable in the logic)
- Would need:
 - Object level type variables and some kind of type quantification
 - let and let rec rules to introduce polymorphism
 - Explicit rule to eliminate (instantiate) polymorphism

10/18/12 26