Programming Languages and
Compilers (CS 421)

»

~
Elsa L Gunter
2112 SC, UIluC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/18/12 1

i Format of Type Judgments

= A type judgement has the form
I|-exp:=t
= I'is a typing environment

= Supplies the types of variables and functions
» Disalistoftheform[x:0,...]

= exp is a program expression
= TS a type to be assigned to exp

= |- pronounced “turnstyle”, or “entails” (or
“satisfies”)

10/18/12 2

$ Axioms - Constants

|- n:int (assuming nis an integer constant)

|- true : bool |- false : bool

= These rules are true with any typing

environment
= N is a meta-variable

10/18/12 3

i Axioms — Variables (Monomorphic Rule)

Notation: Let I'(x) = o if x: 0 €T and
thereisnox:ttotheleftof x:oinT

Variable axiom:

-x:0 ifI'(x)=o0o

10/18/12 4

i Simple Rules - Arithmetic

Primitive operators (® € { +, -, *, ..}):
rl-ext T'|-61 @®)1—=1—"1
F |' el @ 6'2 : T

Relations (~ €{<, >, =, <=, >=}):
r-e:t T'l-6:7
rl|-e ~ e :bool

For the moment, think T is int

10/18/12 5

i Simple Rules - Booleans

Connectives
I'|l-e :bool T |-e :bool
r|-e & e, : bool

I'|-¢ :bool T |-e : bool
Ir|-e|l| e : bool

10/18/12 6

iType Variables in Rules

= If_then_else rule:
I'|-e :bool T'|-e,:t T'|-€;:71
I |- (if e, thene, elsee;):

T is a type variable (meta-variable)

= Can take any type at all

All instances in a rule application must get
same type

Then branch, else branch and if_then_else
must all have same type

10/18/12 7

i Function Application

= Application rule:
ri-e:tv—1 I'l-e:t
Ll-(e &)1
« If you have a function expression e, of

type t; — 7, applied to an argument of
type t,, the resulting expression has

type T,

10/18/12 8

‘ Fun Rule

= Rules describe types, but also how the
environment I may change

= Can only do what rule allows!
= fun rule:
[x:yy]+T|-€e:T
r|-funx->e:t =7

10/18/12 9

‘ Fun Examples

[y:int]+T|-y+3:int
r|-funy->y+ 3 :int—int

[f:int — bool] + I |- f 2 :: [true] : bool list
I |- (funf->f2:: [true])
: (int — bool) — bool list

10/18/12 10

’ (Monomorphic) Let and Let Rec

= let rule:
rl-e;:v;, [x:iyy]+Tl]-6 1,
F|-(letex=¢ing):

= let rec rule:

I'|-(letrecx=¢ine): T,

10/18/12 11

‘ Example

= Which rule do we apply?

?

|- (letrecone =1 :: onein
let x = 2in
funy-> (x::y::one)):int — intlist

10/18/12 12

i Example

» Let rec rule: @ [one : int list] |-

(letx =2in
[one : int list] |- funy -> (X 1y :: one))
(1 ::one): int list . int — int list

|- (let recone =1 :: onein
letx =2in
funy->(x::y:one)):int — intlist

i Proof of 1

= Which rule?

[one : int list] |- (1 :: one) : int list

10/18/12 13 10/18/12 14
‘ Proof of 1 ‘ Proof of 3
= Application Constants Rule Constants Rule
@ @ one : int list] |- one : int list] |-
[one : int list] |- [one : int list] |- [1 [11

((:2) 1): int list— int list one : int list

(::) :int = intlist—=intlist 1 :int

[one : int list] |- (1 :: one) : int list

[one :intlist] |- ((::) 1) : int list — int list

10/18/12 15 10/18/12 16
’ Proof of 4 ‘ Proof of 2
= Rule for variables @ [x:int; one : int list] |-
= Constant funy ->
[one : int list] |- one:int list (X ::y :: one))
[one : int list] |- 2:int pint — int list

10/18/12 17

[one :intlist] |- (letx =2in
funy -> (x 1y ::one)) :int — int list

10/18/12 18

i Proof of 5

>

i Proof of 5

?

[x:int; one :int list] |- funy -> (X :: y :: one))

[y:int; x:int; one : int list] |- (x :: y :: one) : int list

[x:int; one : int list] |- funy -> (x :: y :: one))

rint — int list :int — int list
10/18/12 19 10/18/12 20
‘ Proof of 5 ‘ Proof of 6
Constant Variable
[y:int; x:int; one : int list] |- [y:int; x:int; one : int [.T1-C2)

list] |-
((:2) x):int list— int list (y :: one) : int list

[y:int; x:int; one : int list] |- (x :: y :: one) : int list

[x:int; one : int list] |- funy -> (x :1 y :: one))
:int — int list

s int— int list— int list [...; x:int;...] |- x:int
[y:int; x:int; one : int list] |- ((::) X)
:int list— int list

10/18/12 21 10/18/12 22
’ Proof of 7 ‘ Curry - Howard Isomorphism
= Type Systems are logics; logics are type
Pf of 6 [y/x] Variable s;/sl:fcemg ’ ’ P
S = Types are propositions; propositions are
. types

[y:int; .7 1-((:)y) [...; one: int list] |-
:int list— int list one: int list

[y:int; x:int; one : int list] |- (y :: one) : int
list

10/18/12 23

= Terms are proofs; proofs are terms

= Functions space arrow corresponds to
implication; application corresponds to
modus ponens

10/18/12 24

i Curry - Howard Isomorphism

= Modus Ponens

A=B A
B
. Application
[|-(e;&):p

10/18/12

25

i Mia Copa

= The above system can't handle polymorphism as in
OCAML

= No type variables in type language (only meta-
variable in the logic)

= Would need:

= Object level type variables and some kind of
type quantification
= let and let rec rules to introduce polymorphism

= Explicit rule to eliminate (instantiate)
polymorphism

10/18/12 26

