Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/18/12

i CPS Transformation

= Step 1: Add continuation argument to any function
definition:
s letfarg=e = letfargk=e

= Idea: Every function takes an extra parameter
saying where the result goes

= Step 2: A simple expression in tail position should
be passed to a continuation instead of returned:

» return a = k a
= Assuming a is a constant or variable.
« Simple” = “No available function calls.”

10/18/12 2

i CPS Transformation

= Step 3: Pass the current continuation to every
function call in tail position

= return f arg = farg k

= The function “isn't going to return,” so we need
to tell it where to put the result.

= Step 4: Each function call not in tail position needs
to be converted to take a new continuation
(containing the old continuation as appropriate)

« return op (f arg) = f arg (fun r -> k(op r))
= Op represents a primitive operation

= return f(g arg) = g arg (fun r-> f r k)

10/18/12 3

i Example

Before: After:
let rec add list Ist = let rec add_listk Ist k =
i (* rule 1 *)
match Ist with match Ist with
[1->0 | []-> kO (*rule 2 *)
1 0 :: xs -> add_list xs |0 xs->add_listk xs k
| X 11 XS -> (+) X (* rule 3 *)
(add list XS)" | X :: Xs -> add_listk xs

(funr->k ((+) xn);
(* rule 4 *)

10/18/12

i Other Uses for Continuations

= CPS designed to preserve order of
evaluation

= Continuations used to express order of
evaluation

= Can be used to change order of evaluation

= Implements:
= Exceptions and exception handling
= Co-routines
= (pseudo, aka green) threads

10/18/12

i Exceptions - Example

Zero;;
exception Zero
let rec list_mult_aux list =

match list with [] -> 1

| X i1 XS ->

if x = 0 then Zero

else x * list_mult_aux xs;;

val list._ mult_aux : int list -> int = <fun>

10/18/12

i Exceptions - Example

let list._ mult list =
list._mult_aux list Zero -> 0;;

val list._ mult : int list -> int = <fun>
list_ mult [3:4;2];;

-:int = 24
list._mult [7;4;0];;
-:int=0

list_mult_aux [7;4;0];;
Exception: Zero.

10/18/12

i Exceptions

= When an exception is raised
= The current computation is aborted

= Control is “thrown” back up the call
stack until a matching handler is
found

= All the intermediate calls waiting for a
return values are thrown away

10/18/12 8

i Implementing Exceptions

let multkp mn k =
letr =m * nin
(print_string "product result: ";
print_int r; print_string "\n";
Kr);;
val multkp : int -> int -> (int -> 'a) -> 'a
= <fun>

10/18/12 9

i Implementing Exceptions

let rec list_multk_aux list k kexcp =

match list with [] -> k 1

| X i xs->if x =0then kexcp 0

else list_multk_aux xs
(fun r -> multkp x r k) kexcp;;

val list_multk_aux : int list -> (int -> 'a) -> (int -> 'a)

-> 'a = <fun>
let rec list_multk list k = list_multk_aux list k k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>

10/18/12 10

i Implementing Exceptions

list_multk [3;4;2] report;;

oroduct result: 2

oroduct result: 8

oroduct result: 24

24

- 1 unit = ()

list_multk [7;4;0] report;;
0

- 1 unit = ()

10/18/12 11

i Variants - Syntax (slightly simplified)

s type name = C, [of ty,]|...| C, [of ty,]

= Introduce a type called name

s (funx -> Cx) : ty, -> name

s C is called a constructor; if the optional type
argument is omitted, it is called a constant

s Constructors are the basis of almost all
pattern matching

10/18/12 12

i Enumeration Types as Variants

An enumeration type is a collection of distinct
values

(

-

~N

J

In C and Ocaml they have an order structure;
order by order of input

10/18/12

13

* Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday
| Thursday | Friday | Saturday | Sunday;;

type weekday =

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

10/18/12 14

ﬁ Functions over Enumerations

let day_after day = match day with
Monday -> Tuesday
Tuesday -> Wednesday
Wednesday -> Thursday
hursday -> Friday
Friday -> Saturday
Saturday -> Sunday
Sunday -> Monday;;
val day_after : weekday -> weekday = <fun>

10/18/12 15

i Functions over Enumerations

let rec days_later n day =
match n with 0 -> day
| _->ifn>0
then day_after (days_later (n - 1) day)
else days_later (n + 7) day;;

val days_later : int -> weekday -> weekday
= <fun>

10/18/12 16

i Functions over Enumerations

days_later 2 Tuesday;;

- . weekday = Thursday

days_later (-1) Wednesday;;
- . weekday = Tuesday

days_later (-4) Monday;;

- . weekday = Thursday

10/18/12

17

ﬁ Disjoint Union Types

= Disjoint union of types, with some possibly

occurring more than once

(

-

.

ty,

J

\.

ty,

J

\.

ty

J

~N

J

= We can also add in some new singleton
elements

10/18/12

18

i Disjoint Union Types

type id = DriversLicense of int
| SocialSecurity of int | Name of string;;

type id = DriversLicense of int | SocialSecurity
of int | Name of string

let check id id = match id with
DriversLicense num ->

not (List.mem num [13570; 99999])
SocialSecurity num -> hum < 900000000
Name str -> not (str = "John Doe");;

val check id : id -> bool = <fun>

10/18/12 19

ﬁ Polymorphism in Variants

= The type 'a option is gives us something to
represent non-existence or failure

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

= Used to encode partial functions
= Often can replace the raising of an exception

10/18/12 20

i Functions producing option

let rec first p list =

match list with [] -> None

| (x::xs) -> if p x then Some x else first p xs;;
val first : ('a -> bool) -> 'a list -> '"a option = <fun>
first (fun x -> x > 3) [1;3;4;2;5];;
- . int option = Some 4
first (fun x -> x > 5) [1;3;4;2,5];;
- . int option = None

10/18/12 21

i Functions over option

let result_ok r =

match r with None -> false

| Some _ -> true;;
val result_ok : 'a option -> bool = <fun>
result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;
- : bool = true
result_ok (first (fun x -> x > 5) [1;3;4;2;5]);;
- : bool = false

10/18/12 22

i Folding over Variants

let optionFold someFun noneVal opt =
match opt with None -> noneVal
| Some x -> someFun X;;
val optionFold : ('a -> 'b) -> 'b -> 'a option ->
'b = <fun>
let optionMap f opt =
optionFold (fun x -> Some (f x)) None opt;;
val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

10/18/12 23

ﬁ Recursive Types

= The type being defined may be a component
of itself

4)

10/18/12 24

i Mapping over Variants

let optionMap f opt =
match opt with None -> None
| Some x -> Some (f x);;
val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>
optionMap
(fun X -> x - 2)
(first (fun x -> x> 3) [1;3:4;2;5]);;
-+ int option = Some 2

10/18/12

25

ﬁ Recursive Data Types

type int_Bin_Tree =

Leaf of int | Node of (int_Bin_Tree *
int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of
(int_Bin_Tree * int_Bin_Tree)

10/18/12

26

i Recursive Data Type Values

let bin_tree =
Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node
(Leaf 3, Leaf 6), Leaf (-7))

10/18/12

27

i Recursive Data Type Values

bin tree = Node

N

Node Leaf (-7)

7\

Leaf 3 Leaf 6

10/18/12

28

i Recursive Functions

let rec first_leaf value tree =
match tree with (Leaf n) -> n
| Node (left_tree, right_tree) ->
first_leaf value left_tree;;

val first leaf value : int Bin_Tree -> int =
<fun>

let left = first_leaf value bin_tree;;
val left : int = 3

10/18/12

29

i Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with (Leaf n) -> Leaf (f n)
| Node (left_tree, right_tree) ->
Node (ibtreeMap f left_tree,
ibtreeMap f right_tree);;

val ibtreeMap : (int -> int) -> int_Bin_Tree ->
int_Bin_Tree = <fun>

10/18/12 30

i Mapping over Recursive Types

ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf
8), Leaf (-5))

10/18/12

31

i Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
match tree with Leaf n -> leafFun n
| Node (left_tree, right_tree) ->

nodeFun
(ibtreeFo
(ibtreeFo
val ibtreeFold

dRight leafFun nodeFun left_tree)
dRight leafFun nodeFun right_tree);;

Right : (int->'a) -> ('a->'a->"a) ->

int_Bin_Tree -> 'a = <fun>

10/18/12

32

i Folding over Recursive Types

let tree_sum =
ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum bin_tree;;
-:int=2

10/18/12

33

i Mutually Recursive Types

type 'a tree = Treeleaf of 'a
| TreeNode of 'a treelList
and 'a treeList = Last of 'a tree
| More of (‘a tree * 'a treelList);;

type 'a tree = TreelLeaf of 'a | TreeNode of 'a
treeList

and 'a treeList = Last of 'a tree | More of (‘a
tree * 'a treeList)

10/18/12 34

ﬁ Mutually Recursive Types - Values

let tree =
TreeNode
(More (TreeLeaf 5,
(More (TreeNode
(More (TreelLeaf 3,
Last (TreeLeaf 2))),
Last (TreeLeaf 7)))));;

10/18/12

35

i Mutually Recursive Types - Values

val tree : int tree =
TreeNode
(More
(TreelLeaf 5,
More

(TreeNode (More (TreelLeaf 3, Last
(TreelLeaf 2))), Last (TreelLeaf 7))))

10/18/12

36

i Mutually Recursive Types - Values

TreeNode
More More Last
TreelLeaf TreIeNode >reeL|eaf
5I MLre Last /
TleeLeaf TrIeeLeaf

3 2

10/18/12

ﬁ Mutually Recursive Types - Values

A more conventional picture

10/18/12

38

i Mutually Recursive Functions

let rec fringe tree =
match tree with (TreelLeaf x) -> [X]
| (TreeNode list) -> list_fringe list
and list_fringe tree_list =
match tree_list with (Last tree) -> fringe tree
| (More (tree,list)) ->
(fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> "a list = <fun>
val list_fringe : 'a treelList -> 'a list = <fun>

10/18/12

39

* Mutually Recursive Functions

fringe tree;;
- vintlist = [5; 3; 2; 7]

10/18/12

40

i Nested Recursive Types

type 'a labeled_tree =

TreeNode of (‘a * 'a labeled_tree
list);;

type 'a labeled_tree = TreeNode of ('a
* 'a labeled_tree list)

10/18/12 41

ﬁ Nested Recursive Type Values

let ltree =
TreeNode(5,
[TreeNode (3, []);
TreeNode (2, [TreeNode (1, []);
TreeNode (7, [1]D;
TreeNode (5, [N]);;

10/18/12 42

‘-L Nested Recursive Type Values

val ltree : int labeled tree =
TreeNode
(5,

[TreeNode (3, []); TreeNode (2,
[TreeNode (1, []); TreeNode (7, []D]);

TreeNode (5, []])

10/18/12

43

i Nested Recursive Type Values

Ltree = TreeNode(5)

—
; : i L

TreeNode(3) TreeNode(2) TreeNode(5)

| | |
[] =|= =|=—[] []
TreeNode(1) TreIeNode(7)

|
[] []

10/18/12 44

i Nested Recursive Type Values

10/18/12

45

i Mutually Recursive Functions

let rec flatten_tree labtree =
match labtree with TreeNode (X, treelist)
-> x::flatten_tree_list treelist
and flatten_tree_list treelist =
match treelist with [] -> []
| labtree::labtrees
-> flatten_tree labtree
@ flatten_tree_list labtrees:;

10/18/12 46

i Mutually Recursive Functions

val flatten tree : 'a labeled tree -> 'a list =
<fun>

val flatten tree list : 'a labeled tree list -> 'a
list = <fun>

flatten_tree ltree;;
-:intlist =1[5; 3; 2; 1; 7; 5]

= Nested recursive types lead to mutually
recursive functions

10/18/12 47

i Infinite Recursive Values

let rec ones = 1::0nes;;
val ones : int list =
[1; 1;1: 1; ...]
match ones with x::_ -> x;;
Characters 0-25:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:

[]

match ones with x::_ -> x;;
NNNNANNNANNNANNNANNNANNNANNNANNN

-:int=1

10/18/12 48

‘-L Infinite Recursive Values

let rec lab_tree = TreeNode(2, tree_list)
and tree_list = [lab_tree; lab_tree];;
val lab_tree : int labeled tree =
TreeNode (2, [TreeNode(...); TreeNode(...)])
val tree_list : int labeled_tree list =

[TreeNode (2, [TreeNode(...);
TreeNode(...)]);

TreeNode (2, [TreeNode(...);
TreeNode(...)])]

10/18/12 49

ﬁ Infinite Recursive Values

match lab_tree
with TreeNode (x,) -> x;;
-:int=2

10/18/12

50

i Records

= Records serve the same programming
purpose as tuples

= Provide better documentation, more
readable code

= Allow components to be accessed by label
instead of position

» Labels (aka field names must be unique)
» Fields accessed by suffix dot notation

10/18/12 51

ﬁ Record Types

= Record types must be declared before they
can be used in OCaml|

type person = {name : string; ss : (int * int
*int); age : int};;

type person = { name : string; ss : int * int *
int; age : int; }

= person is the type being introduced
= Name, ss and age are the labels, or fields

10/18/12 52

i Record Values

= Records built with labels; order does not
matter

let teacher = {name = "Elsa L. Gunter";
age = 102; ss = (119,73,6244);;;

val teacher : person =

{name = "Elsa L. Gunter"; ss = (119, 73,
6244); age = 102}

10/18/12 53

ﬁ Record Pattern Matching

let {name = elsa; age = age; ss =
(_, ,S3)} = teacher;;

val elsa : string = "Elsa L. Gunter”
val age : int = 102
val s3 : int = 6244

10/18/12

54

ﬁ Record Field Access

let soc_sec = teacher.ss;:

val soc_sec : int * int * int = (119,
/3, 6244)

10/18/12

55

i Record Values

let student = {ss=(325,40,1276);
name="Joseph Martins"; age=22};;

val student : person =

{name = "Joseph Martins"; ss = (325, 40,
1276); age = 22}

student = teacher;;
- : bool = false

10/18/12

56

i New Records from Old

let birthday person = {person with age =
person.age + 1};;

val birthday : person -> person = <fun>
birthday teacher;;

- . person = {name = "Elsa L. Gunter"; ss =
(119, 73, 6244); age = 103}

10/18/12

57

i New Records from Old

let new_id name soc_sec person =

{person with name = name; ss = soc_sec};;
val new_id : string -> int * int * int -> person
-> person = <fun>

new_id "Guieseppe Martin" (523,04,6712)
student;;

- . person = {name = "Guieseppe Martin"; ss
= (523, 4, 6712); age = 22}

10/18/12 58

