
10/18/12 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/18/12 2

CPS Transformation

  Step 1: Add continuation argument to any function
definition:
  let f arg = e ⇒ let f arg k = e
  Idea: Every function takes an extra parameter

saying where the result goes

  Step 2: A simple expression in tail position should
be passed to a continuation instead of returned:
  return a ⇒ k a
  Assuming a is a constant or variable.
  “Simple” = “No available function calls.”

10/18/12 3

CPS Transformation

  Step 3: Pass the current continuation to every
function call in tail position
  return f arg ⇒ f arg k
  The function “isn’t going to return,” so we need

to tell it where to put the result.
  Step 4: Each function call not in tail position needs

to be converted to take a new continuation
(containing the old continuation as appropriate)
  return op (f arg) ⇒ f arg (fun r -> k(op r))

  op represents a primitive operation

  return f(g arg) ⇒ g arg (fun r-> f r k)

10/18/12 4

Example

Before:
let rec add_list lst =
match lst with
 [] -> 0
| 0 :: xs -> add_list xs
| x :: xs -> (+) x

(add_list xs);;

After:
let rec add_listk lst k =
 (* rule 1 *)
match lst with
| [] -> k 0 (* rule 2 *)
| 0 :: xs -> add_listk xs k
 (* rule 3 *)
| x :: xs -> add_listk xs
 (fun r -> k ((+) x r));;
 (* rule 4 *)

Other Uses for Continuations

  CPS designed to preserve order of
evaluation

  Continuations used to express order of
evaluation

  Can be used to change order of evaluation
  Implements:

  Exceptions and exception handling
  Co-routines
  (pseudo, aka green) threads

10/18/12 5

10/18/12 6

Exceptions - Example

exception Zero;;
exception Zero
let rec list_mult_aux list =
 match list with [] -> 1
 | x :: xs ->
 if x = 0 then raise Zero
 else x * list_mult_aux xs;;
val list_mult_aux : int list -> int = <fun>

10/18/12 7

Exceptions - Example

let list_mult list =
 try list_mult_aux list with Zero -> 0;;
val list_mult : int list -> int = <fun>
list_mult [3;4;2];;
- : int = 24
list_mult [7;4;0];;
- : int = 0
list_mult_aux [7;4;0];;
Exception: Zero.

10/18/12 8

Exceptions

 When an exception is raised
 The current computation is aborted
 Control is “thrown” back up the call

stack until a matching handler is
found

 All the intermediate calls waiting for a
return values are thrown away

10/18/12 9

Implementing Exceptions

let multkp m n k =
 let r = m * n in
 (print_string "product result: ";
 print_int r; print_string "\n";
 k r);;
val multkp : int -> int -> (int -> 'a) -> 'a

= <fun>

10/18/12 10

Implementing Exceptions

let rec list_multk_aux list k kexcp =
 match list with [] -> k 1
 | x :: xs -> if x = 0 then kexcp 0
 else list_multk_aux xs
 (fun r -> multkp x r k) kexcp;;
val list_multk_aux : int list -> (int -> 'a) -> (int -> 'a)

-> 'a = <fun>
let rec list_multk list k = list_multk_aux list k k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>

10/18/12 11

Implementing Exceptions

list_multk [3;4;2] report;;
product result: 2
product result: 8
product result: 24
24
- : unit = ()
list_multk [7;4;0] report;;
0
- : unit = ()

10/18/12 12

Variants - Syntax (slightly simplified)

  type name = C1 [of ty1] | . . . | Cn [of tyn]
  Introduce a type called name
  (fun x -> Ci x) : ty1 -> name
  Ci is called a constructor; if the optional type

argument is omitted, it is called a constant
  Constructors are the basis of almost all

pattern matching

10/18/12 13

Enumeration Types as Variants

An enumeration type is a collection of distinct
values

In C and Ocaml they have an order structure;
order by order of input

10/18/12 14

Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday
 | Thursday | Friday | Saturday | Sunday;;
type weekday =
 Monday
 | Tuesday
 | Wednesday
 | Thursday
 | Friday
 | Saturday
 | Sunday

10/18/12 15

Functions over Enumerations

let day_after day = match day with
 Monday -> Tuesday
 | Tuesday -> Wednesday
 | Wednesday -> Thursday
 | Thursday -> Friday
 | Friday -> Saturday
 | Saturday -> Sunday
 | Sunday -> Monday;;
 val day_after : weekday -> weekday = <fun>

10/18/12 16

Functions over Enumerations

let rec days_later n day =
 match n with 0 -> day
 | _ -> if n > 0
 then day_after (days_later (n - 1) day)
 else days_later (n + 7) day;;
val days_later : int -> weekday -> weekday

= <fun>

10/18/12 17

Functions over Enumerations

days_later 2 Tuesday;;
- : weekday = Thursday
days_later (-1) Wednesday;;
- : weekday = Tuesday
days_later (-4) Monday;;
- : weekday = Thursday

10/18/12 18

Disjoint Union Types

  Disjoint union of types, with some possibly
occurring more than once

  We can also add in some new singleton
elements

ty1 ty2 ty1

10/18/12 19

Disjoint Union Types

type id = DriversLicense of int
| SocialSecurity of int | Name of string;;

type id = DriversLicense of int | SocialSecurity
of int | Name of string

let check_id id = match id with
 DriversLicense num ->
 not (List.mem num [13570; 99999])
 | SocialSecurity num -> num < 900000000
 | Name str -> not (str = "John Doe");;
 val check_id : id -> bool = <fun>

10/18/12 20

Polymorphism in Variants

  The type 'a option is gives us something to
represent non-existence or failure

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

  Used to encode partial functions
  Often can replace the raising of an exception

10/18/12 21

Functions producing option

let rec first p list =
 match list with [] -> None
 | (x::xs) -> if p x then Some x else first p xs;;
val first : ('a -> bool) -> 'a list -> 'a option = <fun>
first (fun x -> x > 3) [1;3;4;2;5];;
- : int option = Some 4
first (fun x -> x > 5) [1;3;4;2;5];;
- : int option = None

10/18/12 22

Functions over option

let result_ok r =

 match r with None -> false

 | Some _ -> true;;

val result_ok : 'a option -> bool = <fun>

result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;

- : bool = true

result_ok (first (fun x -> x > 5) [1;3;4;2;5]);;

- : bool = false

10/18/12 23

Folding over Variants

let optionFold someFun noneVal opt =
 match opt with None -> noneVal
 | Some x -> someFun x;;
val optionFold : ('a -> 'b) -> 'b -> 'a option ->

'b = <fun>
let optionMap f opt =
 optionFold (fun x -> Some (f x)) None opt;;
val optionMap : ('a -> 'b) -> 'a option -> 'b

option = <fun>

10/18/12 24

Recursive Types

  The type being defined may be a component
of itself

ty ty’ ty

10/18/12 25

Mapping over Variants

let optionMap f opt =
 match opt with None -> None
 | Some x -> Some (f x);;
val optionMap : ('a -> 'b) -> 'a option -> 'b

option = <fun>
optionMap
 (fun x -> x - 2)
 (first (fun x -> x > 3) [1;3;4;2;5]);;
-  : int option = Some 2

10/18/12 26

Recursive Data Types

type int_Bin_Tree =
 Leaf of int | Node of (int_Bin_Tree *

int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of
(int_Bin_Tree * int_Bin_Tree)

10/18/12 27

Recursive Data Type Values

let bin_tree =
 Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node
(Leaf 3, Leaf 6), Leaf (-7))

10/18/12 28

Recursive Data Type Values

 bin_tree = Node

 Node Leaf (-7)

Leaf 3 Leaf 6

10/18/12 29

Recursive Functions

let rec first_leaf_value tree =
 match tree with (Leaf n) -> n
 | Node (left_tree, right_tree) ->
 first_leaf_value left_tree;;
val first_leaf_value : int_Bin_Tree -> int =

<fun>
let left = first_leaf_value bin_tree;;
val left : int = 3

10/18/12 30

Mapping over Recursive Types

let rec ibtreeMap f tree =
 match tree with (Leaf n) -> Leaf (f n)
 | Node (left_tree, right_tree) ->
 Node (ibtreeMap f left_tree,
 ibtreeMap f right_tree);;
val ibtreeMap : (int -> int) -> int_Bin_Tree ->

int_Bin_Tree = <fun>

10/18/12 31

Mapping over Recursive Types

ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf
8), Leaf (-5))

10/18/12 32

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
 match tree with Leaf n -> leafFun n
 | Node (left_tree, right_tree) ->
 nodeFun
 (ibtreeFoldRight leafFun nodeFun left_tree)
 (ibtreeFoldRight leafFun nodeFun right_tree);;
val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) ->

int_Bin_Tree -> 'a = <fun>

10/18/12 33

Folding over Recursive Types

let tree_sum =
 ibtreeFoldRight (fun x -> x) (+);;
val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum bin_tree;;
- : int = 2

10/18/12 34

Mutually Recursive Types

type 'a tree = TreeLeaf of 'a
 | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree
 | More of ('a tree * 'a treeList);;
type 'a tree = TreeLeaf of 'a | TreeNode of 'a

treeList
and 'a treeList = Last of 'a tree | More of ('a

tree * 'a treeList)

10/18/12 35

Mutually Recursive Types - Values

let tree =
 TreeNode
 (More (TreeLeaf 5,
 (More (TreeNode
 (More (TreeLeaf 3,
 Last (TreeLeaf 2))),
 Last (TreeLeaf 7)))));;

10/18/12 36

Mutually Recursive Types - Values

 val tree : int tree =
 TreeNode
 (More
 (TreeLeaf 5,
 More
 (TreeNode (More (TreeLeaf 3, Last

(TreeLeaf 2))), Last (TreeLeaf 7))))

10/18/12 37

Mutually Recursive Types - Values

TreeNode

More More Last

TreeLeaf TreeNode TreeLeaf

 5 More Last 7

 TreeLeaf TreeLeaf

 3 2

10/18/12 38

Mutually Recursive Types - Values

A more conventional picture

 5 7

 3 2

10/18/12 39

Mutually Recursive Functions

let rec fringe tree =
 match tree with (TreeLeaf x) -> [x]
 | (TreeNode list) -> list_fringe list
and list_fringe tree_list =
 match tree_list with (Last tree) -> fringe tree
 | (More (tree,list)) ->
 (fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>

10/18/12 40

Mutually Recursive Functions

fringe tree;;
-  : int list = [5; 3; 2; 7]

10/18/12 41

Nested Recursive Types

type 'a labeled_tree =
 TreeNode of ('a * 'a labeled_tree

list);;
type 'a labeled_tree = TreeNode of ('a

* 'a labeled_tree list)

10/18/12 42

Nested Recursive Type Values

let ltree =
 TreeNode(5,
 [TreeNode (3, []);
 TreeNode (2, [TreeNode (1, []);
 TreeNode (7, [])]);
 TreeNode (5, [])]);;

10/18/12 43

Nested Recursive Type Values

val ltree : int labeled_tree =
 TreeNode
 (5,
 [TreeNode (3, []); TreeNode (2,

[TreeNode (1, []); TreeNode (7, [])]);
 TreeNode (5, [])])

10/18/12 44

Nested Recursive Type Values

Ltree = TreeNode(5)

 :: :: :: []

TreeNode(3) TreeNode(2) TreeNode(5)

 [] :: :: [] []

 TreeNode(1) TreeNode(7)

 [] []

10/18/12 45

Nested Recursive Type Values

5

3 2 5

1 7

10/18/12 46

Mutually Recursive Functions

let rec flatten_tree labtree =
 match labtree with TreeNode (x,treelist)
 -> x::flatten_tree_list treelist
 and flatten_tree_list treelist =
 match treelist with [] -> []
 | labtree::labtrees
 -> flatten_tree labtree
 @ flatten_tree_list labtrees;;

10/18/12 47

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list =
<fun>

val flatten_tree_list : 'a labeled_tree list -> 'a
list = <fun>

flatten_tree ltree;;
- : int list = [5; 3; 2; 1; 7; 5]
  Nested recursive types lead to mutually

recursive functions

10/18/12 48

Infinite Recursive Values

let rec ones = 1::ones;;
val ones : int list =
 [1; 1; 1; 1; ...]
match ones with x::_ -> x;;
Characters 0-25:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[]
 match ones with x::_ -> x;;
 ^^^^^^^^^^^^^^^^^^^^^^^^^
- : int = 1

10/18/12 49

Infinite Recursive Values

let rec lab_tree = TreeNode(2, tree_list)
 and tree_list = [lab_tree; lab_tree];;
val lab_tree : int labeled_tree =
 TreeNode (2, [TreeNode(...); TreeNode(...)])
val tree_list : int labeled_tree list =
 [TreeNode (2, [TreeNode(...);

TreeNode(...)]);
 TreeNode (2, [TreeNode(...);

TreeNode(...)])]

10/18/12 50

Infinite Recursive Values

match lab_tree
 with TreeNode (x, _) -> x;;
- : int = 2

10/18/12 51

Records

  Records serve the same programming
purpose as tuples

  Provide better documentation, more
readable code

  Allow components to be accessed by label
instead of position
  Labels (aka field names must be unique)
  Fields accessed by suffix dot notation

10/18/12 52

Record Types

  Record types must be declared before they
can be used in OCaml

type person = {name : string; ss : (int * int
* int); age : int};;

type person = { name : string; ss : int * int *
int; age : int; }

  person is the type being introduced
  name, ss and age are the labels, or fields

10/18/12 53

Record Values

  Records built with labels; order does not
matter

let teacher = {name = "Elsa L. Gunter";
age = 102; ss = (119,73,6244)};;

val teacher : person =
 {name = "Elsa L. Gunter"; ss = (119, 73,

6244); age = 102}

10/18/12 54

Record Pattern Matching

let {name = elsa; age = age; ss =
(_,_,s3)} = teacher;;

val elsa : string = "Elsa L. Gunter"
val age : int = 102
val s3 : int = 6244

10/18/12 55

Record Field Access

let soc_sec = teacher.ss;;
val soc_sec : int * int * int = (119,

73, 6244)

10/18/12 56

Record Values

let student = {ss=(325,40,1276);
name="Joseph Martins"; age=22};;

val student : person =
 {name = "Joseph Martins"; ss = (325, 40,

1276); age = 22}
student = teacher;;
- : bool = false

10/18/12 57

New Records from Old

let birthday person = {person with age =
person.age + 1};;

val birthday : person -> person = <fun>
birthday teacher;;
- : person = {name = "Elsa L. Gunter"; ss =

(119, 73, 6244); age = 103}

10/18/12 58

New Records from Old

let new_id name soc_sec person =
 {person with name = name; ss = soc_sec};;
val new_id : string -> int * int * int -> person

-> person = <fun>
new_id "Guieseppe Martin" (523,04,6712)

student;;
- : person = {name = "Guieseppe Martin"; ss

= (523, 4, 6712); age = 22}

