
10/16/12 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/16/12 2

Functions Over Lists

let rec map f list =
 match list
 with [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

10/16/12 3

Iterating over lists

let rec fold_left f a list =
 match list
 with [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left
 (fun () -> print_string)
 ()
 ["hi"; "there"];;
hithere- : unit = ()

10/16/12 4

Iterating over lists

let rec fold_right f list b =
 match list
 with [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right
 (fun s -> fun () -> print_string s)
 ["hi"; "there"]
 ();;
therehi- : unit = ()

10/16/12 5

Structural Recursion

  Functions on recursive datatypes (eg lists)
tend to be recursive

  Recursion over recursive datatypes generally
by structural recursion
  Recursive calls made to components of structure

of the same recursive type
  Base cases of recursive types stop the recursion

of the function

10/16/12 6

Structural Recursion : List Example

let rec length list = match list
 with [] -> 0 (* Nil case *)
 | x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4
  Nil case [] is base case
  Cons case recurses on component list xs

10/16/12 7

Forward Recursion

  In Structural Recursion, split input into
components and (eventually) recurse

  Forward Recursion form of Structural
Recursion

  In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

  Wait until whole structure has been
traversed to start building answer

10/16/12 8

Forward Recursion: Examples

let rec double_up list =
 match list
 with [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

10/16/12 9

Encoding Recursion with Fold

let rec append list1 list2 = match list1 with
 [] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

 Base Case Operation Recursive Call

let append list1 list2 =
 fold_right (fun x y -> x :: y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
 - : int list = [1; 2; 3; 4; 5; 6]

10/16/12 10

Mapping Recursion

  One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
 with [] -> []
 | x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

10/16/12 11

Mapping Recursion

  Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
 List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

  Same function, but no rec

10/16/12 12

Folding Recursion

  Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
 with [] -> 1
 | x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48
  Computes (2 * (4 * (6 * 1)))

10/16/12 13

Folding Recursion

  multList folds to the right
  Same as:
let multList list =
 List.fold_right
 (fun x -> fun p -> x * p)
 list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48

10/16/12 14

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with
 [] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let rec prodlist list = match list with
 [] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
- : int = 24

10/16/12 15

Folding

let rec fold_left f a list = match list
 with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
 with [] -> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

10/16/12 16

Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
-  : int = 24

10/16/12 17

Normal
call

h

g

f

…

An Important Optimization

  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

10/16/12 18

Tail
call

h

f

…

An Important Optimization

  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

  Then h can return directly to f
instead of g

10/16/12 19

Tail Recursion

  A recursive program is tail recursive if all
recursive calls are tail calls

  Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

  Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
  May require an auxiliary function

10/16/12 20

Example of Tail Recursion

let rec prod l =
 match l with [] -> 1
 | (x :: rem) -> x * prod rem;;
val prod : int list -> int = <fun>
let prod list =
 let rec prod_aux l acc =
 match l with [] -> acc
 | (y :: rest) -> prod_aux rest (acc * y)
(* Uses associativity of multiplication *)
 in prod_aux list 1;;
 val prod : int list -> int = <fun>

10/16/12 21

Recall

let rec poor_rev list = match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

  What is its running time?

10/16/12 22

Quadratic Time

  Each step of the recursion takes time
proportional to input

  Each step of the recursion makes only one
recursive call.

  List example:

let rec poor_rev list = match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

10/16/12 23

Tail Recursion - Example

let rec rev_aux list revlist =
 match list with [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

  What is its running time?

10/16/12 24

Comparison

  poor_rev [1,2,3] =
  (poor_rev [2,3]) @ [1] =
  ((poor_rev [3]) @ [2]) @ [1] =
  (((poor_rev []) @ [3]) @ [2]) @ [1] =
  (([] @ [3]) @ [2]) @ [1]) =
  ([3] @ [2]) @ [1] =
  (3:: ([] @ [2])) @ [1] =
  [3,2] @ [1] =
  3 :: ([2] @ [1]) =
  3 :: (2:: ([] @ [1])) = [3, 2, 1]

10/16/12 25

Comparison

  rev [1,2,3] =
  rev_aux [1,2,3] [] =
  rev_aux [2,3] [1] =
  rev_aux [3] [2,1] =
  rev_aux [] [3,2,1] = [3,2,1]

10/16/12 26

Folding - Tail Recursion

-  # let rev list =
-  fold_left
-  (fun l -> fun x -> x :: l) //comb op
 [] //accumulator cell
 list

10/16/12 27

Encoding Tail Recursion with fold_left

let prod list = let rec prod_aux l acc =
 match l with [] -> acc
 | (y :: rest) -> prod_aux rest (acc * y)
 in prod_aux list 1;;
val prod : int list -> int = <fun>

 Init Acc Value Recursive Call Operation

let prod list =
 List.fold_left (fun acc y -> acc * y) 1 list;;
val prod: int list -> int = <fun>
prod [4;5;6];;
 - : int =120

10/16/12 28

Folding

  Can replace recursion by fold_right in any
forward primitive recursive definition
  Primitive recursive means it only recurses on

immediate subcomponents of recursive data
structure

  Can replace recursion by fold_left in any tail
primitive recursive definition

10/16/12 29

Map from Fold

let map f list =
 fold_right (fun x y -> f x :: y) list [];;
val map : ('a -> 'b) -> 'a list -> 'b list =

<fun>
map ((+)1) [1;2;3];;
- : int list = [2; 3; 4]
  Can you write fold_right (or fold_left)

with just map? How, or why not?

10/16/12 30

Higher Order Functions

  A function is higher-order if it takes a
function as an argument or returns one as
a result

  Example:
let compose f g = fun x -> f (g x);;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c ->

'b = <fun>
  The type ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b

is a higher order type because of
('a -> 'b) and ('c -> 'a) and -> 'c -> 'b

10/16/12 31

Partial Application

(+);;
- : int -> int -> int = <fun>
(+) 2 3;;
- : int = 5
let plus_two = (+) 2;;
val plus_two : int -> int = <fun>
plus_two 7;;
- : int = 9
  Patial application also called sectioning

10/16/12 32

Lambda Lifting

  You must remember the rules for evaluation
when you use partial application

let add_two = (+) (print_string "test\n"; 2);;
test
val add_two : int -> int = <fun>
let add2 = (* lambda lifted *)
 fun x -> (+) (print_string "test\n"; 2) x;;
val add2 : int -> int = <fun>

10/16/12 33

Lambda Lifting

thrice add_two 5;;
- : int = 11
thrice add2 5;;
test
test
test
- : int = 11
  Lambda lifting delayed the evaluation of the

argument to (+) until the second argument
was supplied

10/16/12 34

Partial Application and “Unknown Types”

  Recall compose plus_two:
let f1 = compose plus_two;;
val f1 : ('_a -> int) -> '_a -> int = <fun>
  Compare to lambda lifted version:
let f2 = fun g -> compose plus_two g;;
val f2 : ('a -> int) -> 'a -> int = <fun>
  What is the difference?

10/16/12 35

Partial Application and “Unknown Types”

  ‘_a can only be instantiated once for an expression
f1 plus_two;;
- : int -> int = <fun>
f1 List.length;;
Characters 3-14:
 f1 List.length;;
 ^^^^^^^^^^^
This expression has type 'a list -> int but is here used

with type int -> int

10/16/12 36

Partial Application and “Unknown Types”

  ‘a can be repeatedly instantiated

f2 plus_two;;
- : int -> int = <fun>
f2 List.length;;
- : '_a list -> int = <fun>

10/16/12 37

Continuation Passing Style

  A programming technique for all forms
of “non-local” control flow:
  non-local jumps
  exceptions
  general conversion of non-tail calls to tail

calls

  Essentially it’s a higher-order function
version of GOTO

10/16/12 38

Continuations

  Idea: Use functions to represent the control
flow of a program

  Method: Each procedure takes a function as
an argument to which to pass its result;
outer procedure “returns” no result

  Function receiving the result called a
continuation

  Continuation acts as “accumulator” for work
still to be done

10/16/12 39

Example of Tail Recursion

let rec app fl x =
 match fl with [] -> x
 | (f :: rem_fs) -> f (app rem_fs x);;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>
let app fs x =
 let rec app_aux fl acc=
 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>

10/16/12 40

Continuation Passing Style

  Writing procedures so that they take a
continuation to which to give (pass) the
result, and return no result, is called
continuation passing style (CPS)

10/16/12 41

Example of Tail Recursion & CSP

let app fs x =
 let rec app_aux fl acc=
 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>
let rec appk fl x k =
 match fl with [] -> k x
 | (f :: rem_fs) -> appk rem_fs x (fun z -> k (f z));;
val appk : ('a -> 'a) list -> 'a -> ('a -> 'b) -> 'b

10/16/12 42

Continuation Passing Style

  A compilation technique to implement non-
local control flow, especially useful in
interpreters.

  A formalization of non-local control flow in
denotational semantics

10/16/12 43

Terms

  A function is in Direct Style when it returns
its result back to the caller.

  A Tail Call occurs when a function returns
the result of another function call without
any more computations (eg tail recursion)

  A function is in Continuation Passing Style
when it passes its result to another function.

  Instead of returning the result to the caller,
we pass it forward to another function.

10/16/12 44

Example

  Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

  Simple function using a continuation:
let plusk a b k = k (a + b)
val plusk : int -> int -> (int -> ’a) -> ’a = <fun>
plusk 20 22 report;;
42
- : unit = ()

Simple Functions Taking Continuations

  Given a primitive operation, can convert it to
pass its result forward to a continuation

  Examples:
let subk x y k = k(x + y);;
val subk : int -> int -> (int -> 'a) -> 'a = <fun>
let eqk x y k = k(x = y);;
val eqk : 'a -> 'a -> (bool -> 'b) -> 'b = <fun>
let timesk x y k = k(x * y);;
val timesk : int -> int -> (int -> 'a) -> 'a = <fun>

10/16/12 45

Nesting Continuations

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let add_three x y z= let p = x + y in p + z;;
val add_three : int -> int -> int -> int = <fun>
let add_three_k x y z k =
 addk x y (fun p -> addk p z k);;
val add_three_k : int -> int -> int -> (int -> 'a)

-> 'a = <fun>

10/16/12 46

