
10/16/12 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/16/12 2

Functions Over Lists

let rec map f list =
 match list
 with [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

10/16/12 3

Iterating over lists

let rec fold_left f a list =
 match list
 with [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left
 (fun () -> print_string)
 ()
 ["hi"; "there"];;
hithere- : unit = ()

10/16/12 4

Iterating over lists

let rec fold_right f list b =
 match list
 with [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right
 (fun s -> fun () -> print_string s)
 ["hi"; "there"]
 ();;
therehi- : unit = ()

10/16/12 5

Structural Recursion

  Functions on recursive datatypes (eg lists)
tend to be recursive

  Recursion over recursive datatypes generally
by structural recursion
  Recursive calls made to components of structure

of the same recursive type
  Base cases of recursive types stop the recursion

of the function

10/16/12 6

Structural Recursion : List Example

let rec length list = match list
 with [] -> 0 (* Nil case *)
 | x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4
  Nil case [] is base case
  Cons case recurses on component list xs

10/16/12 7

Forward Recursion

  In Structural Recursion, split input into
components and (eventually) recurse

  Forward Recursion form of Structural
Recursion

  In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

  Wait until whole structure has been
traversed to start building answer

10/16/12 8

Forward Recursion: Examples

let rec double_up list =
 match list
 with [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

10/16/12 9

Encoding Recursion with Fold

let rec append list1 list2 = match list1 with
 [] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

 Base Case Operation Recursive Call

let append list1 list2 =
 fold_right (fun x y -> x :: y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
 - : int list = [1; 2; 3; 4; 5; 6]

10/16/12 10

Mapping Recursion

  One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
 with [] -> []
 | x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

10/16/12 11

Mapping Recursion

  Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
 List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

  Same function, but no rec

10/16/12 12

Folding Recursion

  Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
 with [] -> 1
 | x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48
  Computes (2 * (4 * (6 * 1)))

10/16/12 13

Folding Recursion

  multList folds to the right
  Same as:
let multList list =
 List.fold_right
 (fun x -> fun p -> x * p)
 list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48

10/16/12 14

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with
 [] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let rec prodlist list = match list with
 [] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
- : int = 24

10/16/12 15

Folding

let rec fold_left f a list = match list
 with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
 with [] -> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

10/16/12 16

Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
-  : int = 24

10/16/12 17

Normal
call

h

g

f

…

An Important Optimization

  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

10/16/12 18

Tail
call

h

f

…

An Important Optimization

  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

  Then h can return directly to f
instead of g

10/16/12 19

Tail Recursion

  A recursive program is tail recursive if all
recursive calls are tail calls

  Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

  Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
  May require an auxiliary function

10/16/12 20

Example of Tail Recursion

let rec prod l =
 match l with [] -> 1
 | (x :: rem) -> x * prod rem;;
val prod : int list -> int = <fun>
let prod list =
 let rec prod_aux l acc =
 match l with [] -> acc
 | (y :: rest) -> prod_aux rest (acc * y)
(* Uses associativity of multiplication *)
 in prod_aux list 1;;
 val prod : int list -> int = <fun>

10/16/12 21

Recall

let rec poor_rev list = match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

  What is its running time?

10/16/12 22

Quadratic Time

  Each step of the recursion takes time
proportional to input

  Each step of the recursion makes only one
recursive call.

  List example:

let rec poor_rev list = match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

10/16/12 23

Tail Recursion - Example

let rec rev_aux list revlist =
 match list with [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

  What is its running time?

10/16/12 24

Comparison

  poor_rev [1,2,3] =
  (poor_rev [2,3]) @ [1] =
  ((poor_rev [3]) @ [2]) @ [1] =
  (((poor_rev []) @ [3]) @ [2]) @ [1] =
  (([] @ [3]) @ [2]) @ [1]) =
  ([3] @ [2]) @ [1] =
  (3:: ([] @ [2])) @ [1] =
  [3,2] @ [1] =
  3 :: ([2] @ [1]) =
  3 :: (2:: ([] @ [1])) = [3, 2, 1]

10/16/12 25

Comparison

  rev [1,2,3] =
  rev_aux [1,2,3] [] =
  rev_aux [2,3] [1] =
  rev_aux [3] [2,1] =
  rev_aux [] [3,2,1] = [3,2,1]

10/16/12 26

Folding - Tail Recursion

-  # let rev list =
-  fold_left
-  (fun l -> fun x -> x :: l) //comb op
 [] //accumulator cell
 list

10/16/12 27

Encoding Tail Recursion with fold_left

let prod list = let rec prod_aux l acc =
 match l with [] -> acc
 | (y :: rest) -> prod_aux rest (acc * y)
 in prod_aux list 1;;
val prod : int list -> int = <fun>

 Init Acc Value Recursive Call Operation

let prod list =
 List.fold_left (fun acc y -> acc * y) 1 list;;
val prod: int list -> int = <fun>
prod [4;5;6];;
 - : int =120

10/16/12 28

Folding

  Can replace recursion by fold_right in any
forward primitive recursive definition
  Primitive recursive means it only recurses on

immediate subcomponents of recursive data
structure

  Can replace recursion by fold_left in any tail
primitive recursive definition

10/16/12 29

Map from Fold

let map f list =
 fold_right (fun x y -> f x :: y) list [];;
val map : ('a -> 'b) -> 'a list -> 'b list =

<fun>
map ((+)1) [1;2;3];;
- : int list = [2; 3; 4]
  Can you write fold_right (or fold_left)

with just map? How, or why not?

10/16/12 30

Higher Order Functions

  A function is higher-order if it takes a
function as an argument or returns one as
a result

  Example:
let compose f g = fun x -> f (g x);;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c ->

'b = <fun>
  The type ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b

is a higher order type because of
('a -> 'b) and ('c -> 'a) and -> 'c -> 'b

10/16/12 31

Partial Application

(+);;
- : int -> int -> int = <fun>
(+) 2 3;;
- : int = 5
let plus_two = (+) 2;;
val plus_two : int -> int = <fun>
plus_two 7;;
- : int = 9
  Patial application also called sectioning

10/16/12 32

Lambda Lifting

  You must remember the rules for evaluation
when you use partial application

let add_two = (+) (print_string "test\n"; 2);;
test
val add_two : int -> int = <fun>
let add2 = (* lambda lifted *)
 fun x -> (+) (print_string "test\n"; 2) x;;
val add2 : int -> int = <fun>

10/16/12 33

Lambda Lifting

thrice add_two 5;;
- : int = 11
thrice add2 5;;
test
test
test
- : int = 11
  Lambda lifting delayed the evaluation of the

argument to (+) until the second argument
was supplied

10/16/12 34

Partial Application and “Unknown Types”

  Recall compose plus_two:
let f1 = compose plus_two;;
val f1 : ('_a -> int) -> '_a -> int = <fun>
  Compare to lambda lifted version:
let f2 = fun g -> compose plus_two g;;
val f2 : ('a -> int) -> 'a -> int = <fun>
  What is the difference?

10/16/12 35

Partial Application and “Unknown Types”

  ‘_a can only be instantiated once for an expression
f1 plus_two;;
- : int -> int = <fun>
f1 List.length;;
Characters 3-14:
 f1 List.length;;
 ^^^^^^^^^^^
This expression has type 'a list -> int but is here used

with type int -> int

10/16/12 36

Partial Application and “Unknown Types”

  ‘a can be repeatedly instantiated

f2 plus_two;;
- : int -> int = <fun>
f2 List.length;;
- : '_a list -> int = <fun>

10/16/12 37

Continuation Passing Style

  A programming technique for all forms
of “non-local” control flow:
  non-local jumps
  exceptions
  general conversion of non-tail calls to tail

calls

  Essentially it’s a higher-order function
version of GOTO

10/16/12 38

Continuations

  Idea: Use functions to represent the control
flow of a program

  Method: Each procedure takes a function as
an argument to which to pass its result;
outer procedure “returns” no result

  Function receiving the result called a
continuation

  Continuation acts as “accumulator” for work
still to be done

10/16/12 39

Example of Tail Recursion

let rec app fl x =
 match fl with [] -> x
 | (f :: rem_fs) -> f (app rem_fs x);;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>
let app fs x =
 let rec app_aux fl acc=
 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>

10/16/12 40

Continuation Passing Style

  Writing procedures so that they take a
continuation to which to give (pass) the
result, and return no result, is called
continuation passing style (CPS)

10/16/12 41

Example of Tail Recursion & CSP

let app fs x =
 let rec app_aux fl acc=
 match fl with [] -> acc
 | (f :: rem_fs) -> app_aux rem_fs
 (fun z -> acc (f z))
 in app_aux fs (fun y -> y) x;;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>
let rec appk fl x k =
 match fl with [] -> k x
 | (f :: rem_fs) -> appk rem_fs x (fun z -> k (f z));;
val appk : ('a -> 'a) list -> 'a -> ('a -> 'b) -> 'b

10/16/12 42

Continuation Passing Style

  A compilation technique to implement non-
local control flow, especially useful in
interpreters.

  A formalization of non-local control flow in
denotational semantics

10/16/12 43

Terms

  A function is in Direct Style when it returns
its result back to the caller.

  A Tail Call occurs when a function returns
the result of another function call without
any more computations (eg tail recursion)

  A function is in Continuation Passing Style
when it passes its result to another function.

  Instead of returning the result to the caller,
we pass it forward to another function.

10/16/12 44

Example

  Simple reporting continuation:
let report x = (print_int x; print_newline());;
val report : int -> unit = <fun>

  Simple function using a continuation:
let plusk a b k = k (a + b)
val plusk : int -> int -> (int -> ’a) -> ’a = <fun>
plusk 20 22 report;;
42
- : unit = ()

Simple Functions Taking Continuations

  Given a primitive operation, can convert it to
pass its result forward to a continuation

  Examples:
let subk x y k = k(x + y);;
val subk : int -> int -> (int -> 'a) -> 'a = <fun>
let eqk x y k = k(x = y);;
val eqk : 'a -> 'a -> (bool -> 'b) -> 'b = <fun>
let timesk x y k = k(x * y);;
val timesk : int -> int -> (int -> 'a) -> 'a = <fun>

10/16/12 45

Nesting Continuations

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let add_three x y z= let p = x + y in p + z;;
val add_three : int -> int -> int -> int = <fun>
let add_three_k x y z k =
 addk x y (fun p -> addk p z k);;
val add_three_k : int -> int -> int -> (int -> 'a)

-> 'a = <fun>

10/16/12 46

