
10/9/12 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/9/12 2

Question

  Observation: Functions are first-class values
in this language

  Question: What value does the environment
record for a function variable?

  Better question: What is the value of a fun
expression?

  Answer: a closure

10/9/12 3

Save the Environment!

  A closure is a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:

f → < (v1,…,vn) → exp, ρf >

  Where ρf is the environment in effect when f
is defined (if f is a simple function)

10/9/12 4

Closure for plus_x

  When plus_x was defined, had environment:

ρplus_x = {x → 12, …, y → 24, …}

  Recall: let plus_x y = y + x

 is really let plus_x = fun y -> y + x

  Closure for plus_x:

<y → y + x, ρplus_x >

  Environment just after plus_x defined:

 {plus_x → <y → y + x, ρplus_x >} + ρplus_x

10/9/12 5

Evaluation of Application of plus_x;;

  Have environment:
 ρ = {plus_x → <y → y + x, ρplus_x >, … ,

 y → 3, …}
 where ρplus_x = {x → 12, … , y → 24, …}

  Eval (plus_x y, ρ) rewrites to
  Eval (app <y → y + x, ρplus_x > 3, ρ)

rewrites to
  Eval (y + x, {y → 3} +ρplus_x) rewrites to
  Eval (3 + 12 , ρplus_x) = 15

Functions on tuples

let plus_pair (n,m) = n + m;;
val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;
- : int = 7
let double x = (x,x);;
val double : 'a -> 'a * 'a = <fun>
double 3;;
- : int * int = (3, 3)
double "hi";;
- : string * string = ("hi", "hi")

10/9/12 6

10/9/12 7

• Each clause: pattern on
left, expression on right

• Each x, y has scope of
only its clause

• Use first matching clause

Match Expressions

let triple_to_pair triple =

 match triple

 with (0, x, y) -> (x, y)

 | (x, 0, y) -> (x, y)

 | (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int =
<fun>

10/9/12 8

Closure for plus_pair

  Assume ρplus_pair was the environment just

before plus_pair defined

  Closure for plus_pair:

<(n,m) → n + m, ρplus_pair>

  Environment just after plus_pair defined:

 {plus_pair → <(n,m) → n + m, ρplus_pair >}

+ ρplus_pair

10/9/12 9

Evaluation of Application with Closures

  In environment ρ, evaluate left term to closure,
c = <(x1,…,xn) → b, ρ>

  (x1,…,xn) variables in (first) argument

  Evaluate the right term to values, (v1,…,vn)

  Update the environment ρ to

 ρ’ = {x1 → v1,…, xn →vn}+ ρ

  Evaluate body b in environment ρ’

10/9/12 10

Evaluation of Application of plus_pair

  Assume environment

ρ = {x → 3…,
 plus_pair →<(n,m) →n + m, ρplus_pair>} +
 ρplus_pair
  Eval (plus_pair (4,x), ρ)=

  Eval (app <(n,m) →n + m, ρplus_pair> (4,x), ρ)) =

  Eval (app <(n,m) →n + m, ρplus_pair> (4,3), ρ)) =

  Eval (n + m, {n -> 4, m -> 3} + ρplus_pair) =

  Eval (4 + 3, {n -> 4, m -> 3} + ρplus_pair) = 7

10/9/12 11

Curried vs Uncurried

  Recall
val add_three : int -> int -> int -> int = <fun>
  How does it differ from
let add_triple (u,v,w) = u + v + w;;
val add_triple : int * int * int -> int = <fun>

  add_three is curried;
  add_triple is uncurried

10/9/12 12

Curried vs Uncurried

add_triple (6,3,2);;
- : int = 11
add_triple 5 4;;
Characters 0-10:
 add_triple 5 4;;
 ^^^^^^^^^^
This function is applied to too many arguments,
maybe you forgot a `;'
fun x -> add_triple (5,4,x);;
: int -> int = <fun>

10/9/12 13

Consider this code:

let x = 27;;
let f x =
 let x = 5 in
 (fun x -> print_int x) 10;;
f 12;;
What value is printed?
 5
10
12
27

Scoping Question

10/9/12 14

Higher Order Functions

  A function is higher-order if it takes a
function as an argument or returns one as
a result

  Example:
let compose f g = fun x -> f (g x);;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c ->

'b = <fun>
  The type ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b

is a higher order type because of
('a -> 'b) and ('c -> 'a) and -> 'c -> 'b

10/9/12 15

Thrice

  Recall:
let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
  How do you write thrice with compose?

10/9/12 16

Thrice

  Recall:
let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
  How do you write thrice with compose?
let thrice f = compose f (compose f f);;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
  Is this the only way?

10/9/12 17

Partial Application

(+);;
- : int -> int -> int = <fun>
(+) 2 3;;
- : int = 5
let plus_two = (+) 2;;
val plus_two : int -> int = <fun>
plus_two 7;;
- : int = 9
  Patial application also called sectioning

10/9/12 18

Lambda Lifting

  You must remember the rules for evaluation
when you use partial application

let add_two = (+) (print_string "test\n"; 2);;
test
val add_two : int -> int = <fun>
let add2 = (* lambda lifted *)
 fun x -> (+) (print_string "test\n"; 2) x;;
val add2 : int -> int = <fun>

10/9/12 19

Lambda Lifting

thrice add_two 5;;
- : int = 11
thrice add2 5;;
test
test
test
- : int = 11
  Lambda lifting delayed the evaluation of the

argument to (+) until the second argument
was supplied

10/9/12 20

Partial Application and “Unknown Types”

  Recall compose plus_two:
let f1 = compose plus_two;;
val f1 : ('_a -> int) -> '_a -> int = <fun>
  Compare to lambda lifted version:
let f2 = fun g -> compose plus_two g;;
val f2 : ('a -> int) -> 'a -> int = <fun>
  What is the difference?

10/9/12 21

Partial Application and “Unknown Types”

  ‘_a can only be instantiated once for an expression
f1 plus_two;;
- : int -> int = <fun>
f1 List.length;;
Characters 3-14:
 f1 List.length;;
 ^^^^^^^^^^^
This expression has type 'a list -> int but is here used

with type int -> int

10/9/12 22

Partial Application and “Unknown Types”

  ‘a can be repeatedly instantiated

f2 plus_two;;
- : int -> int = <fun>
f2 List.length;;
- : '_a list -> int = <fun>

10/9/12 23

Recursive Functions

let rec factorial n =
 if n = 0 then 1 else n * factorial (n - 1);;
 val factorial : int -> int = <fun>
factorial 5;;
- : int = 120
(* rec is needed for recursive function

declarations *)

10/9/12 24

Recursion Example

Compute n2 recursively using:
n2 = (2 * n - 1) + (n - 1)2

let rec nthsq n = (* rec for recursion *)
 match n (* pattern matching for cases *)
 with 0 -> 0 (* base case *)
 | n -> (2 * n -1) (* recursive case *)
 + nthsq (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>
nthsq 3;;
-  : int = 9

Structure of recursion similar to inductive proof

10/9/12 25

Recursion and Induction

let rec nthsq n = match n with 0 -> 0
 | n -> (2 * n - 1) + nthsq (n - 1) ;;

  Base case is the last case; it stops the computation
  Recursive call must be to arguments that are

somehow smaller - must progress to base case
  if or match must contain base case
  Failure of these may cause failure of termination

10/9/12 26

Lists

  First example of a recursive datatype (aka
algebraic datatype)

  Unlike tuples, lists are homogeneous in
type (all elements same type)

10/9/12 27

Lists

  List can take one of two forms:
  Empty list, written []

  Non-empty list, written x :: xs

  x is head element, xs is tail list, :: called
“cons”

  Syntactic sugar: [x] == x :: []

  [x1; x2; …; xn] == x1 :: x2 :: … :: xn :: []

10/9/12 28

Lists

let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
(8::5::3::2::1::1::[]) = fib5;;
- : bool = true
fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1;

1]

10/9/12 29

Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
 let bad_list = [1; 3.2; 7];;
 ^^^
This expression has type float but is here

used with type int

10/9/12 30

Question

  Which one of these lists is invalid?

1.  [2; 3; 4; 6]
2.  [2,3; 4,5; 6,7]
3.  [(2.3,4); (3.2,5); (6,7.2)]
4.  [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

10/9/12 31

Answer

  Which one of these lists is invalid?

1.  [2; 3; 4; 6]
2.  [2,3; 4,5; 6,7]
3.  [(2.3,4); (3.2,5); (6,7.2)]
4.  [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

  3 is invalid because of last pair

10/9/12 32

Functions Over Lists

let rec double_up list =
 match list
 with [] -> [] (* pattern before ->,
 expression after *)
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1;

1; 1; 1]

10/9/12 33

Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

10/9/12 34

Functions Over Lists

let rec map f list =
 match list
 with [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

10/9/12 35

Iterating over lists

let rec fold_left f a list =
 match list
 with [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left
 (fun () -> print_string)
 ()
 ["hi"; "there"];;
hithere- : unit = ()

10/9/12 36

Iterating over lists

let rec fold_right f list b =
 match list
 with [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right
 (fun s -> fun () -> print_string s)
 ["hi"; "there"]
 ();;
therehi- : unit = ()

10/9/12 37

Structural Recursion

  Functions on recursive datatypes (eg lists)
tend to be recursive

  Recursion over recursive datatypes generally
by structural recursion
  Recursive calls made to components of structure

of the same recursive type
  Base cases of recursive types stop the recursion

of the function

10/9/12 38

Structural Recursion : List Example

let rec length list = match list
 with [] -> 0 (* Nil case *)
 | x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
- : int = 4
  Nil case [] is base case
  Cons case recurses on component list xs

10/9/12 39

Forward Recursion

  In Structural Recursion, split input into
components and (eventually) recurse

  Forward Recursion form of Structural
Recursion

  In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

  Wait until whole structure has been
traversed to start building answer

10/9/12 40

Forward Recursion: Examples

let rec double_up list =
 match list
 with [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

10/9/12 41

Encoding Recursion with Fold

let rec append list1 list2 = match list1 with
 [] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

 Base Case Operation Recursive Call

let append list1 list2 =
 fold_right (fun x y -> x :: y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
 - : int list = [1; 2; 3; 4; 5; 6]

10/9/12 42

Mapping Recursion

  One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list
 with [] -> []
 | x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

10/9/12 43

Mapping Recursion

  Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
 List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]

  Same function, but no rec

10/9/12 44

Folding Recursion

  Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
 with [] -> 1
 | x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48
  Computes (2 * (4 * (6 * 1)))

10/9/12 45

Folding Recursion

  multList folds to the right
  Same as:
let multList list =
 List.fold_right
 (fun x -> fun p -> x * p)
 list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
- : int = 48

10/9/12 46

How long will it take?

  Remember the big-O notation from CS 225
and CS 273

  Question: given input of size n, how long to
generate output?

  Express output time in terms of input size,
omit constants and take biggest power

10/9/12 47

How long will it take?

Common big-O times:
  Constant time O (1)

  input size doesn’t matter
  Linear time O (n)

  double input ⇒ double time
  Quadratic time O (n2)

  double input ⇒ quadruple time
  Exponential time O (2n)

  increment input ⇒ double time

10/9/12 48

Linear Time

  Expect most list operations to take
linear time O (n)

  Each step of the recursion can be done
in constant time

  Each step makes only one recursive call
  List example: multList, append
  Integer example: factorial

10/9/12 49

Quadratic Time

  Each step of the recursion takes time
proportional to input

  Each step of the recursion makes only one
recursive call.

  List example:

let rec poor_rev list = match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

10/9/12 50

Exponential running time

  Hideous running times on input of any size

  Each step of recursion takes constant time

  Each recursion makes two recursive calls

  Easy to write naïve code that is exponential

for functions that can be linear

10/9/12 51

Exponential running time

let rec naiveFib n = match n
 with 0 -> 0
 | 1 -> 1
 | _ -> naiveFib (n-1) + naiveFib (n-2);;
val naiveFib : int -> int = <fun>

10/9/12 52

Normal
call

h

g

f

…

An Important Optimization

  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

10/9/12 53

Tail
call

h

f

…

An Important Optimization

  When a function call is made,
the return address needs to be
saved to the stack so we know
to where to return when the
call is finished

  What if f calls g and g calls h,
but calling h is the last thing g
does (a tail call)?

  Then h can return directly to f
instead of g

10/9/12 54

Tail Recursion

  A recursive program is tail recursive if all
recursive calls are tail calls

  Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

  Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
  May require an auxiliary function

10/9/12 55

Tail Recursion - Example

let rec rev_aux list revlist =
 match list with [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

  What is its running time?

10/9/12 56

Comparison

  poor_rev [1,2,3] =
  (poor_rev [2,3]) @ [1] =
  ((poor_rev [3]) @ [2]) @ [1] =
  (((poor_rev []) @ [3]) @ [2]) @ [1] =
  (([] @ [3]) @ [2]) @ [1]) =
  ([3] @ [2]) @ [1] =
  (3:: ([] @ [2])) @ [1] =
  [3,2] @ [1] =
  3 :: ([2] @ [1]) =
  3 :: (2:: ([] @ [1])) = [3, 2, 1]

10/9/12 57

Comparison

  rev [1,2,3] =
  rev_aux [1,2,3] [] =
  rev_aux [2,3] [1] =
  rev_aux [3] [2,1] =
  rev_aux [] [3,2,1] = [3,2,1]

10/9/12 58

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with
 [] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let rec prodlist list = match list with
 [] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
- : int = 24

10/9/12 59

Folding

let rec fold_left f a list = match list
 with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =

<fun>
fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
 with [] -> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =

<fun>
fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

10/9/12 60

Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9
let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
-  : int = 24

10/9/12 61

Folding - Tail Recursion

-  # let rev list =
-  fold_left
-  (fun l -> fun x -> x :: l) //comb op
 [] //accumulator cell
 list

10/9/12 62

Folding

  Can replace recursion by fold_right in any
forward primitive recursive definition
  Primitive recursive means it only recurses on

immediate subcomponents of recursive data
structure

  Can replace recursion by fold_left in any tail
primitive recursive definition

