Programming Languages and
Compilers (CS 421)

I Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/9/12 1

‘ Question

= Observation: Functions are first-class values
in this language

= Question: What value does the environment
record for a function variable?

= Better question: What is the value of a fun
expression?

= Answer: a closure

10/9/12 2

i Save the Environment!

= A closure is a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:
f— < (v1,..,vn) — exp, ps >
= Where p¢ is the environment in effect when f
is defined (if f is a simple function)

10/9/12 3

i Closure for plus_x

= When plus_x was defined, had environment:
Pplus_x = {x—12,..,y—=24, ..}
= Recall: let plus_xy =y + x
is really let plus_x = funy -> vy + x
= Closure for plus_x:
<Y =Y + X Pplus_x >
= Environment just after plus_x defined:

{plus_x = <y =y +x, Pplus_x >} + Pplus_x
10/9/12 4

i Evaluation of Application of plus_x;;

= Have environment:
p = A{plus_x = <y =y + X, ppjys x >/ - »
y—3, ..}
where Pplus x = xX—=12,...,y— 24,..}
= Eval (plus_xy, p) rewrites to

= Eval (app <y =y + X, Pplus_x > 3/ P)
rewrites to

= Eval (y + x, {y = 3} +ppys_x) rewrites to
= Eval 3 + 12, ppys x) = 15

10/9/12 5

Functions on tuples

let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;

-rint=7

let double x = (x,x);;

val double : 'a -> 'a * 'a = <fun>

double 3;;

-rint *int = (3, 3)

double "hi";;

- : string * string = ("hi", "hi")

10/9/12 6

‘ Match Expressions

let triple_to_pair triple =
triple *Each clause: pattern on
0 left, expression on right
X X
0%, y) == (6 y) «Each x, y has scope of
x,0,¥)-> (X, y) only its clause
(X, Y, _) (X, y) b *Use first matching clause

val triple_to_pair : int * int * int -> int * int =
<fun>

10/9/12 7

‘ Closure for plus_pair

= ASSUMe pps pair Was the environment just
before plus_pair defined

= Closure for plus_pair:
<(n,m) = n+ M, Py pair™>
= Environment just after plus_pair defined:
{plus_pair - <(n,m) = n + m, Pplus_pair >}

* Pplus_pair

10/9/12 8

i Evaluation of Application with Closures

= In environment p, evaluate left term to closure,
€ = <(Xy,...,X,) = b, p>

= (Xy,...,X,) variables in (first) argument

= Evaluate the right term to values, (vy,...,v,)

= Update the environment p to
p' = {X; = Vi) Xy =V 3+ p

= Evaluate body b in environment p’

10/9/12 9

i Evaluation of Application of plus_pair

= Assume environment

p={x—3..,
plus_pair —<(n,m) —=n + m, pys pair™>} +

pplus_pair
= Eval (plus_pair (4,x), p)=

= Eval (app <(n,m) —=n + m, pyus pair™> (4,X), p)) =
= Eval (app <(n,m) =n + m, pyys pair> (4,3), 0)) =
» Eval (n + m, {n->4, m->3} + pps pair) =

= Eval (4 +3,{n->4, m->3} + pyu pair) = 7

10/9/12 10

iCurried vs Uncurried

= Recall

val add_three : int -> int -> int -> int = <fun>
= How does it differ from

let add_triple (u,v,w) =u + v + w;;

val add_triple : int * int * int -> int = <fun>

= add_three is curried,
= add_triple is uncurried

10/9/12 11

iCurried vs Uncurried

add_triple (6,3,2);;
-rint=11
add_triple 5 4;;
Characters 0-10:
add_triple 5 4;;
NANANANNNANNNAN
This function is applied to too many arguments,
maybe you forgot a ;'
fun x -> add_triple (5,4,x);;
int -> int = <fun>

10/9/12 12

Scoping Question

Consider this code:
let x = 27;;
let f x =
letx =5in
(fun x -> print_int x) 10;;

f12;;

What value is printed?
5

10

12

27

10/9/12

iHigher Order Functions

= A function is higher-order if it takes a

function as an argument or returns one as
a result

= Example:

let compose f g = fun x -> f (g X);;

val compose : (fa->'b) -> ('c->"'a) ->'c->
'b = <fun>

s Thetype (la->'b)->('c->"a)->'c->'b
is a higher order type because of
(fa->'b)and ('c->'a)and ->'c->'b

10/9/12 14

Thrice

let thrice f x = f (f (f x));;
val thrice : (‘a->'a) -> 'a-> 'a = <fun>
| « How do you write thrice with compose? |

10/9/12

Thrice

let thrice f x = f (f (f X));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

| « How do you write thrice with compose? |
let thrice f = compose f (compose f f);;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

= Is this the only way?

10/9/12 16

i Partial Application

#(+)

-int -> int -> int = <fun>

#(+)23;;

-:int=5

let plus_two = (+) 2;;

val plus_two : int -> int = <fun>

plus_two 7;;

-:int=9

= Patial application also called sectioning

10/9/12

i Lambda Lifting

= You must remember the rules for evaluation

when you use partial application

let add_two = (+) (print_string "test\n"; 2);;
test

val add_two : int -> int = <fun>
letadd2 = (* lambda lifted *)

fun x -> (+) (print_string "test\n"; 2) x;;
val add?2 : int -> int = <fun>

10/9/12 18

iLambda Lifting

thrice add_two 5;;

-:int=11

thrice add2 5;;
test

test

test

-:int=11

= Lambda lifting delayed the evaluation of the
argument to (+) until the second argument
was supplied

10/9/12 19

iPartiaI Application and “Unknown Types”

| = Recall compose plus_two: |
let f1 = compose plus_two;;
val f1: ("_a->int) ->'_a-> int = <fun>

| = Compare to lambda lifted version: |
let f2 = fun g -> compose plus_two g;;
val f2 : ("a -> int) -> 'a -> int = <fun>

| = What is the difference? |

10/9/12 20

Partial Application and “Unknown Types”

= '_a can only be instantiated once for an expressionl
f1 plus_two;;
- rint -> int = <fun>
f1 List.length;;
Characters 3-14:
f1 List.length;;

ANNNNNNNNANN

This expression has type 'a list -> int but is here used
with type int -> int

10/9/12 21

* Partial Application and “Unknown Types”

|. ‘a can be repeatedly instantiated |

f2 plus_two;;

- :int -> int = <fun>

f2 List.length;;

-: " alist -> int = <fun>

10/9/12 22

i Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
-:1int=120
(* rec is needed for recursive function
declarations *)

10/9/12 23

‘ Recursion Example

Compute n? recursively using:
n=(2*n-1)+ (n-1)?

let rec nthsg n = (* rec for recursion *)
match n (* pattern matching for cases *)
with0->0 (* base case *)
|n->2*n-1) (* recursive case *)

+ nthsq (n -1);; (* recursive call *)

val nthsq : int -> int = <fun>

nthsq 3;;

- 1int=9

Structure of recursion similar to inductive proof

10/9/12 24

‘ Recursion and Induction

let rec nthsq n = match n with 0 -> 0
|n->(@2*n-1)+nthsq(n-1);;

= Base case is the last case; it stops the computation

= Recursive call must be to arguments that are
somehow smaller - must progress to base case

= if or match must contain base case
= Failure of these may cause failure of termination

10/9/12 25

iLists

= First example of a recursive datatype (aka
algebraic datatype)

= Unlike tuples, lists are homogeneous in
type (all elements same type)

10/9/12 26

i Lists

= List can take one of two forms:
= Empty list, written []
= Non-empty list, written x :: xs

= X is head element, xs is tail list, :: called
\\Consll

= Syntactic sugar: [x] == x:: []
s [X1; x2; ., xn]==x1:ax2:.nxn[]

10/9/12 27

‘ Lists

let fib5 = [8;5;3;2;1;1];;

val fib5 : int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]) = fib5;;

- : bool = true

fib5 @ fib6;;

- :1i]nt list=1[8;5;3;2;,1;1;13;8;5; 3,2, 1;

10/9/12 28

i Lists are Homogeneous

let bad_list = [1; 3.2; 71;;
Characters 19-22:
let bad_list = [1; 3.2; 7];;

NANN

This expression has type float but is here
used with type int

10/9/12 29

i Question

= Which one of these lists is invalid?

. [2; 3; 4; 6]

. [2,3; 4,5; 6,7]

. [(2.3,4); (3.2,5); (6,7.2)]

. [[*hi”; “there"]; [*wahcha”]; [1; [“doin"]]

A W N =

10/9/12 30

‘ Answer

= Which one of these lists is invalid?

[2; 3; 4; 6]

[2,3; 4,5; 6,7]

[(2.3,4); (3.2,5); (6,7.2)]

[[*hi”; “there"]; ["wahcha”]; []; ["doin"]]

Rl A

= 3is invalid because of last pair

10/9/12 31

‘ Functions Over Lists

let rec double_up list =
match list
with []->[] (* pattern before ->,
expression after *)
| (x::xs)->(x::x::double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 :intlist =[8; 8; 5;5; 3; 3; 2; 2; 1;
1;1;1]

10/9/12 32

i Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =

match list

with []-> []

| (x::xs) -> poor_rev xs @ [x];;

val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

10/9/12 33

* Functions Over Lists

let rec map f list =
match list
with [] -> []
| (h::t) -> (Fh) :: (map ft);;
valmap : ("fa->'b) -> 'alist -> 'b list = <fun>
map plus_two fib5;;
-intlist =[10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
vintlist =[12; 7; 4; 2; 1, 0; 0]

10/9/12 34

Iterating over lists

let rec fold_left f a list =
match list
with []-> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->"'a)->"'a->'blist->'a =
<fun>
fold_left
(fun () -> print_string)
0
["hi"; "there"];;
hithere- : unit = ()

10/9/12 35

Iterating over lists

let rec fold_right f list b =
match list
with[]-> b
| (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ("a->'b->"'b)->"alist->'b->'b =
<fun>
fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
05
therehi- : unit = ()

10/9/12 36

‘ Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally
by structural recursion

= Recursive calls made to components of structure
of the same recursive type

= Base cases of recursive types stop the recursion
of the function

10/9/12 37

‘ Structural Recursion : List Example

let rec length list = match list
with [1-> 0 (* Nil case *)
| X 11 xs -> 1 + length xs;; (* Cons case *)

val length : 'a list -> int = <fun>

length [5; 4; 3; 2];;

-:int=4

= Nil case [] is base case

= Cons case recurses on component list xs

10/9/12 38

Forward Recursion

= In Structural Recursion, split input into
components and (eventually) recurse

= Forward Recursion form of Structural
Recursion

= In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

= Wait until whole structure has been
traversed to start building answer

10/9/12 39

i Forward Recursion: Examples

let rec double_up list =
match list
with[]1->[]
| (X ::xs)-> (x::x:: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with []-> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

10/9/12 40

i Encoding Recursion with Fold

let rec append list1 list2 = match listl with
[1->list2 | x::xs -> x :: append xs list2;;
val appfend :'a list -> '|a list —>§x{ list = <fun>

| Base Case | |Operation || Recursive Call |

let append listl list2 =
fold_right (fun x y -> x :7y) listl list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
-:intlist = [1; 2; 3; 4; 5; 6]

10/9/12 41

i Mapping Recursion

= One common form of structural recursion
applies a function to each element in the
structure

let rec doublelList list = match list
with[]->]]
| x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- rintlist = [4; 6; 8]

10/9/12 42

‘ Mapping Recursion

= Can use the higher-order recursive map

function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doublelList [2;3;4];;
- 1 int list = [4; 6; 8]

= Same function, but no rec

10/9/12

43

‘ Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| X::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

= Computes (2 * (4 * (6 * 1)))

10/9/12 44

i Folding Recursion

= multList folds to the right
= Same as:

let multList list =
List.fold_right
(funx ->fun p -> x * p)
list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

10/9/12

45

i How long will it take?

= Remember the big-O notation from CS 225
and CS 273

= Question: given input of size n, how long to
generate output?

= Express output time in terms of input size,
omit constants and take biggest power

10/9/12 46

i How long will it take?

Common big-O times:
= Constant time O (1)
= input size doesn't matter
= Linear time O (n)
= double input = double time
= Quadratic time O (n?)
= double input = quadruple time
= Exponential time O (27)
= increment input = double time

10/9/12

47

i Linear Time

= Expect most list operations to take
linear time O (n)

= Each step of the recursion can be done
in constant time

= Each step makes only one recursive call
= List example: multList, append
= Integer example: factorial

10/9/12 48

iQuadratic Time

= Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

= List example:

let rec poor_rev list = match list
with [] -> []
| (x::xs) -> poor_rev xs @ [X];;
val poor_rev : 'a list -> 'a list = <fun>

10/9/12 49

iExponentiaI running time

= Hideous running times on input of any size
= Each step of recursion takes constant time
= Each recursion makes two recursive calls

= Easy to write naive code that is exponential

for functions that can be linear

10/9/12 50

‘ Exponential running time

let rec naiveFib n = match n
with0->0
[1->1
| _ -> naiveFib (n-1) + naiveFib (n-2);;
val naiveFib : int -> int = <fun>

10/9/12 51

‘ An Important Optimization

= When a function call is made,
Normal the return address needs to be

call saved to the stack so we know
to where to return when the
<: h call is finished
a] = What if fcalls gand g calls A,
i but calling A is the last thing g
does (a tail call)?

10/9/12 52

i An Important Optimization

= When a function call is made,

Tail the return address needs to be
call saved to the stack so we know
. to where to return when the

call is finished

f = What if fcalls gand g calls h,
but calling A is the last thing g
does (a tail call)?

= Then h can return directly to
instead of g

4

10/9/12 53

iTaiI Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
= May require an auxiliary function

10/9/12 54

iTail Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| X :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

10/9/12 55

‘ Comparison

= poor_rev [1,2,3] =

= (poor_rev [2,3]) @ [1] =

= ((poor_rev [3]) @ [2]) @ [1] =

= (((poor_rev[]) @ [3]) @ [2]) @ [1] =
= ([J@e[B)@[2])) @[1]) =

» (Bl@[2])) @[1] =

« Gu(]l@R2)) @[1] =

= [32]@[1] =

=3 (21@[1]) =

s 30 (]@I[1D) =13, 2,1]

10/9/12 56

i Comparison

mrev[l,23] =

mrev_aux [1,2,3][]=

= rev_aux [2,3] [1] =

= rev_aux [3][2,1] =

= rev_aux []1[3,2,1] = [3,2,1]

10/9/12 57

Folding Functions over Lists

| How are the following functions similar? |

let rec sumlist list = match list with
[1->0] x::xs -> x + sumlist xs;;

val sumlist : int list -> int = <fun>

sumlist [2;3;4];;

-:int=9

let rec prodlist list = match list with
[]->1]x::xs -> x * prodlist xs;;

val prodlist : int list -> int = <fun>

prodlist [2;3;4];;

-rint=24

10/9/12 58

i Folding

let rec fold_left f a list = match list
with []-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a->'b->'a)->'a->'blist->"a =
<fun>
fold_left f a [xy; Xy;...;%,] = f(...(F (f @ x1) X5)...)X,

let rec fold_right f list b = match list
with []-> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ("a->'b->'b)->'alist->'b->'b =
<fun>
|fold_right f [Xy; Xp5.-5%a] b = £ X, (F X, (.. (F X, D)...)) |

10/9/12 59

iFoIding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>

sumlist [2;3;4];;

-:int=9

let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>

prodlist [2;3;4];;

- 1int =24

10/9/12 60

‘ Folding - Tail Recursion

- # letrev list =
fold_left
(funl->funx->x::1) //comb op
[] //accumulator cell
list

10/9/12 61

iFoIding

= Can replace recursion by fold_right in any
forward primitive recursive definition
= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure
= Can replace recursion by fold_left in any tail
primitive recursive definition

10/9/12 62

