
Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC

http://www.cs.uiuc.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

Personal History

 First began programming more than
35 years ago

 First languages: Basic, DG Nova
assembler

 Since have programmed in at least
10 different languages
 Not including AWK, sed, shell scripts,

latex, HTML, etc

Personal History - Moral

 One language may not last you all day,
let alone your whole programming life

Programming Language Goals

 Original Model:
 Computers expensive, people cheap; hand code

to keep computer busy

 Today:
 People expensive, computers cheap; write

programs efficiently and correctly

Programming Language Goals

 Mythical Man-Month Author Fred Brookes

“The most important two tools for system
programming … are (1) high-level programming
languages and (2) interactive languages”

Languages as Abstractions

 Abstraction from the Machine
 Abstraction from the Operational Model
 Abstraction of Errors
 Abstraction of Data
 Abstraction of Components
 Abstraction for Reuse

Why Study Programming Languages?

Helps you to:
 understand efficiency costs of given constructs

 reduce bugs by understanding semantics of
constructs

 think about programming in new ways

 choose best language for task

 design better program interfaces (and
languages)

 learn new languages

Study of Programming Languages

 Design and Organization
 Syntax: How a program is written

 Semantics: What a program means

 Implementation: How a program runs

 Major Language Features
 Imperative / Applicative / Rule-based

 Sequential / Concurrent

Historical Environment

 Mainframe Era
 Batch environments (through

early 60’s and 70’s)
 Programs submitted to operator as

a pile of punch cards; programs
were typically run over night and
output put in programmer’s bin

Historical Environment

 Mainframe Era
 Interactive environments

 Multiple teletypes and CRT’s
hooked up to single mainframe

 Time-sharing OS (Multics) gave
users time slices

 Lead to compilers with read-eval-
print loops

Historical Environment

 Personal Computing Era
 Small, cheap, powerful

 Single user, single-threaded OS (at first
any way)

 Windows interfaces replaced line input

 Wide availability lead to inter-computer
communications and distributed systems

Historical Environment

 Networking Era
 Local area networks for printing, file

sharing, application sharing

 Global network
 First called ARPANET, now called Internet

 Composed of a collection of protocols: FTP,
Email (SMTP), HTTP (HMTL), URL

Features of a Good Language

 Simplicity – few clear constructs, each
with unique meaning

 Orthogonality - every combination of
features is meaningful, with meaning
given by each feature

 Flexible control constructs

Features of a Good Language

 Rich data structures – allows programmer to
naturally model problem

 Clear syntax design – constructs should
suggest functionality

 Support for abstraction - program data
reflects problem being solved; allows
programmers to safely work locally

Features of a Good Language

 Expressiveness – concise programs

 Good programming environment

 Architecture independence and
portability

Features of a Good Language

 Readability
 Simplicity

 Orthogonality

 Flexible control constructs

 Rich data structures

 Clear syntax design

Features of a Good Language

 Writability
 Simplicity

 Orthogonality

 Support for abstraction

 Expressivity

 Programming environment

 Portability

Features of a Good Language

 Usually readability and writability call for
the same language characteristics

 Sometimes they conflict:
 Comments: Nested comments (e.g /*… /*

… */ … */) enhance writability, but
decrease readability

Features of a Good Language

 Reliability
 Readability

 Writability

 Type Checking

 Exception Handling

 Restricted aliasing

Language Paradigms – Imperative Languages

 Main focus: machine state – the set of
values stored in memory locations

 Command-driven: Each statement
uses current state to compute a new
state

 Syntax: S1; S2; S3; ...

 Example languages: C, Pascal,
FORTRAN, COBOL

Language Paradigms – Object-oriented Languages

 Classes are complex data types
grouped with operations (methods) for
creating, examining, and modifying
elements (objects); subclasses include
(inherit) the objects and methods from
superclasses

Language Paradigms – Object-oriented Languages

 Computation is based on objects sending
messages (methods applied to arguments)
to other objects

 Syntax: Varies, object <- method(args)

 Example languages: Java, C++, Smalltalk

Language Paradigms – Applicative Languages

 Applicative (functional) languages
 Programs as functions that take

arguments and return values;
arguments and returned values may
be functions

Language Paradigms – Applicative Languages

 Applicative (functional) languages
 Programming consists of building the

function that computes the answer;
function application and composition main
method of computation

 Syntax: P1(P2(P3 X))

 Example languages: ML, LISP, Scheme,
Haskell, Miranda

Language Paradigms – Logic Programming

 Rule-based languages
 Programs as sets of basic rules for

decomposing problem
 Computation by deduction: search,

unification and backtracking main
components

 Syntax: Answer :- specification rule
 Example languages: (Prolog, Datalog,BNF

Parsing)

Programming Language Implementation

 Develop layers of machines, each more
primitive than the previous

 Translate between successive layers

 End at basic layer

 Ultimately hardware machine at bottom

Basic Machine Components

 Data: basic data types and elements of
those types

 Primitive operations: for examining,
altering, and combining data

 Sequence control: order of execution
of primitive operations

Basic Machine Components

 Data access: control of supply of data
to operations

 Storage management: storage and
update of program and data

 External I/O: access to data and
programs from external sources, and
output results

Basic Computer Architecture

External files

Cache memory

Main memory

Program counter
Data registers

Interpreter Arithmetic/Logic Unit

CPU

Virtual (Software) Machines

 At first, programs written in assembly
language (or at very first, machine language)

 Hand-coded to be very efficient

 Now, no longer write in native assembly
language

 Use layers of software (e.g. operating
system)

 Each layer makes a virtual machine in which
the next layer is defined

Example Layers of Virtual Computers
for a C Program

Virtual computer built by programmer

C virtual computer

Windows 98 OS virtual computer

Micro-code virtual computer

Actual Hardware Computer

Input data Output results

Virtual Machines Within Compilers

 Compilers often define layers of virtual
machines
 Functional languages: Untyped lambda

calculus -> continuations -> generic
pseudo-assembly -> machine specific
code

 May compile to intermediate language
that is interpreted or compiled separately
 Java virtual machine, CAML byte code

To Class

 Name some examples of virtual
machines

 Name some examples of things
that aren’t virtual machines

Interpretation Versus Compilation

 A compiler from language L1 to
language L2 is a program that takes an
L1 program and for each piece of code
in L1 generates a piece of code in L2 of
same meaning

Interpretation Versus Compilation

 An interpreter of L1 in L2 is an L2
program that executes the meaning of a
given L1 program

 Compiler would examine the body of a
loop once; an interpreter would
examine it every time the loop was
executed

Program Aspects

 Syntax: what valid programs look like

 Semantics: what valid programs mean;
what they should compute

 Compiler must contain both information

Major Phases of a Compiler

 Lex
 Break the source into separate tokens

 Parse
 Analyze phrase structure and apply

semantic actions, usually to build an
abstract syntax tree

Major Phases of a Compiler

 Semantic analysis
 Determine what each phrase means,

connect variable name to definition
(typically with symbol tables), check
types

Major Phases of a Compiler

 Translate to intermediate representation

 Instruction selection

 Optimize

 Emit final machine code

Java SML C++Pascal C

IR

Sparc MIPS Pentium Alpha

Major Phases of a Compiler

Source Program
Lex

Tokens
Parse

Abstract Syntax
Semantic
Analysis

Symbol Table
Translate

Intermediate
Representation

Modified from “Modern Compiler Implementation in ML”, by Andrew Appel

Instruction
Selection

Optimized Machine-Specific
Assembly Language

Optimize

Unoptimized Machine-
Specific Assembly Language

Emit code

Assembler

Relocatable
 Object Code

Assembly Language

Linker

Machine
Code

Example of Intermediate
Representation

 Program code: X = Y + Z + W
 tmp = Y + Z

 X = tmp + W

 Simpler language with no compound
arithmetic expressions

Example of Optimization

 Load reg1 with Y
 Load reg2 with Z
 Add reg1 and reg2,

saving to reg1
 Store reg1 to tmp **

 Load reg1 with tmp **
 Load reg2 with W
 Add reg1 and reg2, saving to

reg1
 Store reg1 to X

Program code: X = Y + Z + W

Eliminate two steps marked **

