Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://www.cs.uiuc.edu/class/cs421/

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

Personal History

= First began programming more than
35 years ago

= First languages: Basic, DG Nova
assembler

= Since have programmed in at least
10 different languages

= Not including AWK, sed, shell scripts,
latex, HTML, etc

Personal History - Moral

One language may not last you all day,
let alone your whole programming life

Programming Language Goals

= Original Model:

=« Computers expensive, people cheap; hand code
to keep computer busy

= Today:

= People expensive, computers cheap; write
programs efficiently and correctly

Programming Language Goals

= Mythical Man-Month Author Fred Brookes

“The most important two tools for system
programming ... are (1) high-level programming
languages and (2) interactive languages”

Languages as Abstractions

pstraction from the Machine
nstraction from the Operational Model
pstraction of Errors

nstraction of Data

pstraction of Components

nstraction for Reuse

. |
> > > > > >

Why Study Programming Languages?

Helps you to:
= understand efficiency costs of given constructs

= reduce bugs by understanding semantics of
constructs

= think about programming in new ways
= choose best language for task

= design better program interfaces (and
languages)
= learn new languages

Study of Programming Languages

= Design and Organization
= Syntax: How a program is written
» Semantics: What a program means
= Implementation: How a program runs

= Major Language Features
= Imperative / Applicative / Rule-based
= Sequential / Concurrent

Historical Environment

= Mainframe Era

= Batch environments (through
early 60’s and 70’s)

=« Programs submitted to operator as
a pile of punch cards; programs
were typically run over night and
output put in programmer’s bin

Historical Environment

= Mainframe Era

= Interactive environments

=« Multiple teletypes and CRT's
hooked up to single mainframe

= Time-sharing OS (Multics) gave
users time slices

=« Lead to compilers with read-eval-
print loops

Historical Environment

= Personal Computing Era
= Small, cheap, powerful

= Single user, single-threaded OS (at first
any way)

= Windows interfaces replaced line input

= Wide availability lead to inter-computer
communications and distributed systems

Historical Environment

= Networking Era

= Local area networks for printing, file
sharing, application sharing

= Global network
« First called ARPANET, now called Internet

= Composed of a collection of protocols: FTP,
Email (SMTP), HTTP (HMTL), URL

Features of a Good Language

= Simplicity — few clear constructs, each
with unigue meaning

= Orthogonality - every combination of
features is meaningful, with meaning
given by each feature

= Flexible control constructs

Features of a Good Language

= Rich data structures — allows programmer to
naturally model problem

= Clear syntax design — constructs should
suggest functionality

= Support for abstraction - program data
reflects problem being solved; allows
programmers to safely work locally

Features of a Good Language

= EXpressiveness — concise programs
= Good programming environment

= Architecture independence and
portability

Features of a Good Language

= Readability

= Simplicity

= Orthogonality

= Flexible control constructs
= Rich data structures

= Clear syntax design

Features of a Good Language

= Writability

= Simplicity

= Orthogonality

= Support for abstraction

= EXpressivity

= Programming environment
= Portability

Features of a Good Language

= Usually readability and writability call for
the same language characteristics

= Sometimes they conflict:

= Comments: Nested comments (e.g /*... [*
... 7l ... ') enhance writability, but
decrease readability

Features of a Good Language

= Reliability

= Readability

= Writability

= Type Checking

= Exception Handling
= Restricted aliasing

Language Paradigms — Imperative Languages

= Main focus: machine state — the set of
values stored in memory locations

= Command-driven: Each statement
uses current state to compute a new
state

= Syntax: S1; S2; S3; ...

= Example languages: C, Pascal,
FORTRAN, COBOL

Language Paradigms — Object-oriented Languages

= Classes are complex data types
grouped with operations (methods) for
creating, examining, and modifying
elements (objects); subclasses include
(inherit) the objects and methods from
superclasses

Language Paradigms — Object-oriented Languages

= Computation is based on objects sending
messages (methods applied to arguments)
to other objects

= Syntax: Varies, object <- method(args)
= Example languages: Java, C++, Smalltalk

Language Paradigms — Applicative Languages

= Applicative (functional) languages

= Programs as functions that take
arguments and return values;
arguments and returned values may
be functions

Language Paradigms — Applicative Languages

= Applicative (functional) languages

= Programming consists of building the
function that computes the answer;
function application and composition main
method of computation

« Syntax: P1(P2(P3 X))

= Example languages: ML, LISP, Scheme,
Haskell, Miranda

Language Paradigms — Logic Programming

= Rule-based languages

= Programs as sets of basic rules for
decomposing problem

= Computation by deduction: search,
unification and backtracking main
components

= Syntax: Answer :- specification rule

= Example languages: (Prolog, Datalog,BNF
Parsing)

Programming Language Implementation

= Develop layers of machines, each more
primitive than the previous

= Translate between successive layers
= End at basic layer
= Ultimately hardware machine at bottom

Basic Machine Components

= Data: basic data types and elements of
those types

= Primitive operations: for examining,
altering, and combining data

= Sequence control: order of execution
of primitive operations

Basic Machine Components

= Data access: control of supply of data
to operations

= Storage management: storage and
update of program and data

= External I/O: access to data and
programs from external sources, and
output results

Basic Computer Architecture

External files
|

Main memory
|

Cache memory

———

|
t T |
Program counter e eaaiEE

Interpreter Arithmetic/Logic Unit

Virtual (Software) Machines

= At first, programs written in assembly
language (or at very first, machine language)

= Hand-coded to be very efficient

= Now, no longer write in native assembly
language

= Use layers of software (e.g. operating
system)

= Each layer makes a virtual machine in which
the next layer is defined

hl\“llll—ll\d I—UI,\dIU 1 ¥V 11l GGl VVIIIIJVI\-\!IU

for a C Program

Input data Output results

Virtual computer built by programmer

C virtual computer

Windows 98 OS virtual computer

Micro-code virtual computer

Actual Hardware Computer

Virtual Machines Within Compilers

= Compilers often define layers of virtual
machines

= Functional languages: Untyped lambda
calculus -> continuations -> generic
pseudo-assembly -> machine specific
code

= May compile to intermediate language
that is interpreted or compiled separately

= Java virtual machine, CAML byte code

To Class

= Name some examples of virtual
machines

= Name some examples of things
that aren't virtual machines

Interpretation Versus Compilation

= A compiler from language L1 to
language L2 is a program that takes an
L1 program and for each piece of code
in L1 generates a piece of code in L2 of
same meaning

Interpretation Versus Compilation

= An interpreter of L1 In L2 is an L2
program that executes the meaning of a
given L1 program

= Compiler would examine the body of a
loop once; an interpreter would
examine it every time the loop was
executed

Program Aspects

= Syntax: what valid programs look like

= Semantics: what valid programs mean;
what they should compute

= Compiler must contain both information

Major Phases of a Compiler

s Lex
= Break the source into separate tokens

s Parse

= Analyze phrase structure and apply
semantic actions, usually to build an
abstract syntax tree

Major Phases of a Compiler

= Semantic analysis

= Determine what each phrase means,
connect variable name to definition
(typically with symbol tables), check

types

Major Phases of a Compiler

= [ranslate to intermediate representation

Java SML Pascal C++ C
/ \A
Sparc MIPS Pentium “Aloha

s Instruction selection
= Optimize
= Emit final machine code

Source Program
Lex

Tokens
Parse

Abstract Syntax Specific Assembly Language

Semantic
Analysis
Symbol Table
Translate

Intermediate
Representatio

Major Phases of a Compiler

Instruction
Selection

Unoptimized Machine-

Optimize
Optimized Machine-Specific
Assembly Language

Emit code

Assembly Language
Assembler

Relocatable
Object Code

Linker

Machine
Code

Modified from “Modern Compiler Implementation in ML”, by Andrew Appel

hl\“llll—ll\d 1 e | B sl B0 DN A A

Representation

= Programcode: X=Y+Z+W
stmp =Y +/Z
s X=tmp+W

= Simpler language with no compound
arithmetic expressions

Program code:

Example of Optimization

X=Y+Z+W

= Load reg1 with Y g
= Load reg2 with Z -

= Addreg1 andreg2, |-
saving to reg1

= Store reg1 to tmp **

Load reg1 with tmp **

Load reg2 with W

Add reg1 and reg2, saving to
reg1

Store reg1 to X

Eliminate two steps marked **

