
Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC

http://www.cs.uiuc.edu/class
/sp07/cs421/

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

Elsa L. Gunter

Personal History

• First began programming more
than 35 years ago

• First languages: basic, DG Nova
assembler

• Since have programmed in at least
10 different languages
– Not including AWK, sed, shell scripts,

latex, HTML, etc

Elsa L. Gunter

Personal History - Moral

 One language may not last you all
day, let alone your whole
programming life

Elsa L. Gunter

Programming Language
Goals

• Original Model:
– Computers expensive, people cheap;

hand code to keep computer busy

• Today:
– People expensive, computers cheap;

write programs efficiently and
correctly

Elsa L. Gunter

Programming Language
Goals

• Mythical Man-Month Author Fred
Brookes
“The most important two tools for

system programming … are (1) high-
level programming languages and (2)
interactive languages”

Elsa L. Gunter

Languages as Abstractions

• Abstraction from the Machine

• Abstraction from the Operational Model

• Abstraction of Errors

• Abstraction of Data

• Abstraction of Components

• Abstraction for Reuse

Elsa L. Gunter

Why Study Programming
Languages?

Helps you to:
– understand efficiency costs of given

constructs
– reduce bugs by understanding semantics

of constructs
– think about programming in new ways
– choose best language for task
– design better program interfaces (and

languages)
– learn new languages

Elsa L. Gunter

Study of Programming
Languages

• Design and Organization
– Syntax: How a program is written

– Semantics: What a program means

– Implementation: How a program runs

• Major Language Features
– Imperative / Applicative / Rule-based

– Sequential / Concurrent

Elsa L. Gunter

Historical Environment

• Mainframe Era
–Batch environments (through

early 60’s and 70’s)
• Programs submitted to operator as

a pile of punch cards; programs
were typically run over night and
output put in programmer’s bin

Elsa L. Gunter

Historical Environment

• Mainframe Era
–Interactive environments

• Multiple teletypes and CRT’s
hooked up to single mainframe

• Time-sharing OS (Multics) gave
users time slices

• Lead to compilers with read-eval-
print loops

Elsa L. Gunter

Historical Environment

• Personal Computing Era
– Small, cheap, powerful
– Single user, single-threaded OS (at

first any way)
– Windows interfaces replaced line

input
– Wide availability lead to inter-

computer communications and
distributed systems

Elsa L. Gunter

Historical Environment

• Networking Era
– Local area networks for printing, file

sharing, application sharing

– Global network
• First called ARPANET, now called

Internet

• Composed of a collection of protocols:
FTP, Email (SMTP), HTTP (HMTL), URL

Elsa L. Gunter

Features of a Good Language

• Simplicity – few clear constructs,
each with unique meaning

• Orthogonality - every combination
of features is meaningful, with
meaning given by each feature

• Flexible control constructs

Elsa L. Gunter

Features of a Good Language

• Rich data structures – allows
programmer to naturally model problem

• Clear syntax design – constructs should
suggest functionality

• Support for abstraction - program data
reflects problem being solved; allows
programmers to safely work locally

Elsa L. Gunter

Features of a Good Language

• Expressiveness – concise
programs

• Good programming environment

• Architecture independence and
portability

Elsa L. Gunter

Features of a Good Language

• Readability
–Simplicity

–Orthogonality

–Flexible control constructs

–Rich data structures

–Clear syntax design

Elsa L. Gunter

Features of a Good Language

• Writability
–Simplicity
–Orthogonality
–Support for abstraction
–Expressivity
–Programming environment
–Portability

Elsa L. Gunter

Features of a Good
Language

• Usually readability and writability
call for the same language
characteristics

• Sometimes they conflict:
– Comments: Nested comments (e.g

/*… /* … */ … */) enhance writability,
but decrease readability

Elsa L. Gunter

Features of a Good Language

• Reliability
–Readability

–Writability

–Type Checking

–Exception Handling

–Restricted aliasing

Elsa L. Gunter

Language Paradigms –
Imperative Languages

• Main focus: machine state – the set
of values stored in memory
locations

• Command-driven: Each statement
uses current state to compute a
new state

• Syntax: S1; S2; S3; ...
• Example languages: C, Pascal,

FORTRAN, COBOL

Elsa L. Gunter

Language Paradigms –
Object-oriented Languages

• Classes are complex data types
grouped with operations (methods)
for creating, examining, and
modifying elements (objects);
subclasses include (inherit) the
objects and methods from
superclasses

Elsa L. Gunter

Language Paradigms –
Object-oriented Languages

• Computation is based on objects
sending messages (methods applied to
arguments) to other objects

• Syntax: Varies, object <- method(args)

• Example languages: Java, C++,
Smalltalk

Elsa L. Gunter

Language Paradigms –
Applicative Languages

• Applicative (functional)
languages
–Programs as functions that take

arguments and return values;
arguments and returned values
may be functions

Elsa L. Gunter

Language Paradigms –
Applicative Languages

• Applicative (functional) languages
– Programming consists of building the

function that computes the answer;
function application and composition
main method of computation

– Syntax: P1(P2(P3 X))

– Example languages: ML, LISP,
Scheme, Haskell, Miranda

Elsa L. Gunter

Language Paradigms – Logic
Programming

• Rule-based languages
– Programs as sets of basic rules for

decomposing problem
– Computation by deduction: search,

unification and backtracking main
components

– Syntax: Answer :- specification rule
– Example languages: (Prolog,

Datalog,BNF Parsing)

Elsa L. Gunter

Programming Language
Implementation

• Develop layers of machines, each
more primitive than the previous

• Translate between successive
layers

• End at basic layer

• Ultimately hardware machine at
bottom

Elsa L. Gunter

Basic Machine Components

• Data: basic data types and
elements of those types

• Primitive operations: for
examining, altering, and combining
data

• Sequence control: order of
execution of primitive operations

Elsa L. Gunter

Basic Machine Components

• Data access: control of supply of
data to operations

• Storage management: storage
and update of program and data

• External I/O: access to data and
programs from external sources,
and output results

Elsa L. Gunter

Basic Computer Architecture

External files

Cache memory

Main memory

Program counter
Data registers

Interpreter Arithmetic/Logic Unit

CPU

Elsa L. Gunter

Virtual (Software) Machines

• At first, programs written in assembly
language (or at very first, machine language)

• Hand-coded to be very efficient

• Now, no longer write in native assembly
language

• Use layers of software (e.g. operating
system)

• Each layer makes a virtual machine in which
the next layer is defined

Elsa L. Gunter

Example Layers of Virtual
Computers for a C Program

Virtual computer built by programmer

C virtual computer

Windows 98 OS virtual computer

Micro-code virtual computer

Actual Hardware Computer

Input data Output results

Elsa L. Gunter

Virtual Machines Within
Compilers

• Compilers often define layers of virtual
machines
– Functional languages: Untyped lambda

calculus -> continuations -> generic
pseudo-assembly -> machine specific
code

– May compile to intermediate language
that is interpreted or compiled separately
• Java virtual machine, CAML byte code

Elsa L. Gunter

To Class

• Name some examples of
virtual machines

• Name some examples of
things that aren’t virtual
machines

Elsa L. Gunter

Interpretation Versus
Compilation

• A compiler from language L1 to
language L2 is a program that
takes an L1 program and for each
piece of code in L1 generates a
piece of code in L2 of same
meaning

Elsa L. Gunter

Interpretation Versus
Compilation

• An interpreter of L1 in L2 is an L2
program that executes the meaning
of a given L1 program

• Compiler would examine the body
of a loop once; an interpreter would
examine it every time the loop was
executed

Elsa L. Gunter

Program Aspects

• Syntax: what valid programs look
like

• Semantics: what valid programs
mean; what they should compute

• Compiler must contain both
information

Elsa L. Gunter

Major Phases of a
Compiler

• Lex
–Break the source into separate

tokens

• Parse
–Analyze phrase structure and

apply semantic actions, usually to
build an abstract syntax tree

Elsa L. Gunter

Major Phases of a
Compiler

• Semantic analysis
–Determine what each phrase

means, connect variable name to
definition (typically with symbol
tables), check types

Elsa L. Gunter

Major Phases of a Compiler

• Translate to intermediate representation

• Instruction selection
• Optimize
• Emit final machine code

Java SML C++Pascal C

IR

Sparc MIPS Pentium Alpha

Elsa L. Gunter

Major Phases of a Compiler

Source Program
Lex

Tokens
Parse

Abstract Syntax
Semantic
Analysis

Symbol Table
Translate

Intermediate
Representation

Modified from “Modern Compiler Implementation in ML”, by Andrew Appel

Instruction
Selection

Optimized Machine-Specific
Assembly Language

Optimize

Unoptimized Machine-
Specific Assembly Language

Emit code

Assembler

Relocatable
 Object Code

Assembly Language

Linker

Machine
Code

Elsa L. Gunter

Example of Intermediate
Representation

• Program code: X = Y + Z + W
– tmp = Y + Z
– X = tmp + W

– Simpler language with no compound
arithmetic expressions

Elsa L. Gunter

Example of Optimization

• Load reg1 with Y
• Load reg2 with Z
• Add reg1 and reg2,

saving to reg1
• Store reg1 to tmp **

• Load reg1 with tmp **
• Load reg2 with W
• Add reg1 and reg2, saving to

reg1
• Store reg1 to X

Program code: X = Y + Z + W

Eliminate two steps marked **

