Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

8/28/12



i Contact Information - Elsa L Gunter

s Office: 2112 SC

= Office hours:
= Mondays 11:00am — 11:50am
= Tuesdays 3:30pm — 4:20pm
= Thursdays 12:30pm — 1:40pm
= Also by appointment

= Email: egunter@illinois.edu

8/28/12



i Contact Information - TAs

= Teaching Assistants Office: 0207 SC

= Kyle Blocher
=« Email: blocherl@illinois.edu
= Hours: Tues 1:00pm — 1:50pm &
Thurs 11:00am — 11:50am
= Hassan Samee
= Email: sameel@illinois.edu
= Hours: Wed 1:30pm — 2:20pm &
Fri 4:00pm - 4:50pm

8/28/12



i Course Website

m http://courses.engr.illinois.edu/cs421

= Main page - summary of news items
= Policy - rules governing course

= Lectures - syllabus and slides

= MPs - information about homework
= Exams

= Unit Projects - for 4 credit students
= Resources - tools and helpful info

= FAQ

8/28/12



i Some Course References

No required textbook.

Essentials of Programming Languages (2nd Edition)
by Daniel P. Friedman, Mitchell Wand and
Christopher T. Haynes, MIT Press 2001.

Compilers: Principles, Techniques, and Tools, (also
known as "The Dragon Book"); by Aho, Sethi, and
Ullman. Published by Addison-Wesley. ISBN:
0-201-10088-6.

Modern Compiler Implementation in ML by Andrew
W. Appel, Cambridge University Press 1998

Additional ones for Ocaml given separately

8/28/12 5



i Course Grading

= Homework 20%
= About 12 MPs (in Ocaml) and 12 written assignments

= Submitted by handin on EWS linux machines
=« MPs — plain text code that compiles; HWs — pdf

= Late submission penalty: 20% of assignments total value

= 2 Midterms - 20% each
= Inclass — 0Oct 9, Nov 13

= DO NOT MISS EXAM DATES!
= Final 40% - Dec 14, 7:00pm — 10:00pm
= Percentages are approximate
= Exams may weigh more if homework is much better

8/28/12 6



i Course Homework

You may discuss homeworks and their solutions
with others

You may work in groups, but you must list
members with whom you worked if you share
solutions or solution outlines

Each student must turn in their own solution
separately

You may look at examples from class and other
similar examples from any source

= Note: University policy on plagiarism still holds - cite your
sources if you are not the sole author of your solution

Problems from homework may appear verbatim, or
with some modification on exams

8/28/12 7



i Course Objectives

= New programming paradigm
= Functional programming
= Tail Recursion
= Continuation Passing Style
= Phases of an interpreter / compiler
= Lexing and parsing
= Type checking
= Evaluation

= Programming Language Semantics
= Lambda Calculus
= Operational Semantics

8/28/12



i OCAML

= Compiler is on the EWS-linux systems at
= /usr/local/bin/ocaml

= A (possibly better, non-PowerPoint) text
version of this lecture can be found at

» http://course.engr.illinois.edu/class/cs421/
lectures/ocaml-intro-shell.txt

= For the OCAML code for today’s lecture see

» http://course.engr.illinois.edu/class/cs421/
lectures/ocaml-intro.ml

8/28/12



iWWW Addresses for OCAML

= Main CAML home:
http://caml.inria.fr/index.en.html

= To install OCAML on your computer see:
o http://caml.inria.fr/ocaml/release.en.html

8/28/12 10



i References for CAML

= Supplemental texts (not required):

= The Objective Caml system release 3.09, by
Xavier Leroy, online manual

= Introduction to the Objective Caml
Programming Language, by Jason Hickey

= Developing Applications With Objective
Caml, by Emmanuel Chailloux, Pascal
Manoury, and Bruno Pagano, on O'Reilly

= Available online from course resources

8/28/12 11



i OCAML

= CAML is European descendant of original ML
= American/British version is SML
= O is for object-oriented extension

= ML stands for Meta-Language
= ML family designed for implementing
theorem provers

= It was the meta-language for programming the
“object” language of the theorem prover

= Despite obscure original application area, OCAML
is a full general-purpose programming language

8/28/12 12



i Features of OCAML

Higher order applicative language
Call-by-value parameter passing
Modern syntax

Parametric polymorphism
= Aka structural polymorphism

Automatic garbage collection
User-defined algebraic data types

It's fast - winners of the 1999 and 2000 ICFP
Programming Contests used OCAML

8/28/12

13



i Why learn OCAML?

= Many features not clearly in languages you
have already learned

s Assumed basis for much research in
programming language research

= OCAML is particularly efficient for
orogramming tasks involving languages (eg
parsing, compilers, user interfaces)

= Used at Microsoft for writing SLAM, a formal
methods tool for C programs

8/28/12 14



iSession iIn OCAML

% ocaml
Objective Caml version 3.12.0

# ( Read-eval-print loop; expressions and
declarations

2+ 3 (* Expression *)
- rint=15
#3<2:;
- : bool = false

8/28/12

15



i No Overloading for Basic Arithmetic Operations

# 15 2;;

-1 int = 30

#1.35 + 0.23;; (* Wrong type of addition *)
Characters 0-4:

1.35 + 0.23;; (* Wrong type of addition *)

NANANAN

Error: This expression has type float but an
expression was expected of type

Int
# 1.35 + 0.23;;
- : float = 1.58

8/28/12 16



i No Implicit Coercion

# 1.0 * 2;; (* No Implicit Coercion *)
Characters 0-3:
1.0 * 2;: (* No Implicit Coercion *)
NANN

Error: This expression has type float but an
expression was expected of type

INt

8/28/12

17



i Sequencing Expressions

# Hithere';; (* has type string *)
- : string = "Hi there"

# "Hello world' n";; (* has type unit *)
Hello world

- unit = ()

# (print_string "Bye\n"; 25);; (* Sequence of exp *)
Bye

-:1int =25

8/28/12 18



i Terminology

= Output refers both to the result returned
from a function application

= As in + outputs integers, whereas +. outputs
floats

= And to text printed as a side-effect of a
computation
= As in print_string “\n" outputs a carriage return
« In terms of values, it outputs ( ) (Cunit”)

= We will standardly use “output” to refer to
the value returned

8/28/12 19



i Declarations; Sequencing of Declarations

# cix=2+3;; (*declaration *)

valx:int=5

# lettest = 3 < 2;;

val test : bool = false

#leta=3letb =a+ 2;; (* Sequence of dec
*)

vala:int=3

valb:int=5

8/28/12 20



i Environments

s Environments record what value is associated with
a given identifier

= Central to the semantics and implementation of a
language
= Notation
p = {name; — value,, name,— value,, ...}
Using set notation, but describes a partial function

= Often stored as list, or stack
= 10 find value start from left and take first match

8/28/12 21



iGlobal Variable Creation

# 2+ 3;; (* Expression *)

// doesn't effect the environment

# lettest = 3 < 2;; (* Declaration *)
val test : bool = false

/] p; = {test — false}

#leta=1letb =a + 4;; (* Seq of dec *)
/| p, ={b—5,a— 1, test — false}

8/28/12 22



iNew Bindings Hide Old

/| p,={b—75,a— 1, test — false}
leta = 3;;

= What is the environment after this
declaration?

8/28/12

23



iNew Bindings Hide Old

/| p,={b—75,a— 1, test — false}
leta = 3;;

= What is the environment after this
declaration?

/| p3 =1a — 3, b — 5, test — false}

8/28/12

24



*Local let binding

/| ps={a—3,b—5, test — false}
#letc =
b=a+a
/| pg={b—=6}+p,
/| ={b—6,a— 3, test — false}
b * by
val c:int = 36
/| ps ={c—36,a— 3, b— 5, test — false}
# b;;
-:int=5

8/28/12

25



*Local Variable Creation

/] ps = {c —= 36, b — 5, a — 3, test — false}

# cib=5%*4

/] pe = {b — 20, c — 36, a — 3, test — false}
2 *b;;

-1 int =40

/] p7 = Ps

# b;;

-:int=>5

8/28/12 26



i Booleans (aka Truth Values)

# '
- : bool = true
# '
- : bool = false

#1y>X 25 0;;
-:int =25

8/28/12

27



i Booleans

#3>1 4> 6;;

- : bool = false
#3>1 |4>6;;
- : bool = true

# (print_string "Hi\n"; 3 > 1) || 4 > 6;;
Hi

- : bool = true

# 3 > 1 || (print_string "Bye\n"; 4 > 6);;
- : bool = true

#100(4>6);;

- : bool = true

8/28/12

28



i Tuples

#lets = (5"hi" 3.2);;

val s : int * string * float = (5, "hi", 3.2)

# let =s;: (* (a,b,c) is a pattern *)

vala:int=>5

val b : string = "hi"

val c : float = 3.2

#let x = 2, 9.3;; (* tuples don't require parens in
Ocaml *)

val x : int * float = (2, 9.3)

8/28/12 29



i Tuples

# (*Tuples can be nested *)

letd = ((1,4,62),("bye",15),73.95);;

val d : (int * int * int) * (string * int) * float =
((1, 4, 62), ("bye", 15), 73.95)

# (*Patterns can be nested *)

let (p,(st,_),_) = d;; (* _ matches all, binds nothing
*)

val p :int *int * int = (1, 4, 62)

val st : string = "bye"

8/28/12 30



i Functions

# let plus_two 1 =n + 2;;

val plus_two : int -> int = <fun>

# plus_two 17;;

-:int =19

# let plus_two = n--n+2;;

val plus_two : int -> int = <fun>

# plus_two 14;;

-:int = 16

\First definition syntactic sugar for second\

8/28/12 31



i Using a nameless function

# (fun x->x*3)5;; (* An application *)

-:int =15

# (funy->y +.2.0) (funz->z*3);;
(* As data *)

- : (float -> float) * (int -> int) = (<fun>,
<fun>)

Note: in fun v -> exp(v), scope of variable is
only the body exp(v)

8/28/12

32



iVaIues fixed at declaration time

#letx =12;;

val X 1 int = 12

# letplus Xy =y + x;;

val plus_x : int -> int = <fun>
# plus_x 3:;

What is the result?

8/28/12 33



iVaIues fixed at declaration time

#letx =12;;

val X 1 int = 12

# letplus Xy =y + x;;

val plus_x : int -> int = <fun>
# plus_x 3:;

-:int =15

8/28/12 34



iVaIues fixed at declaration time

#letx =7;; (* New declaration, not an
update *)

val X :int = 7/
# plus_x 3:;

What is the result this time?

8/28/12 35



iVaIues fixed at declaration time

#letx =7;; (* New declaration, not an
update *)

val X :int =7/
# plus_x 3:;
-:int =15

8/28/12 36



i Functions with more than one argument

# letadd_threexyz=x+vy + z;;

val add _three : int -> int -> int -> int = <fun>

# lett = add_three 6 3 2;;

valt:int =11

# let add_three =
funx->(funy->(funz->x+vy+2);;

val add three : int -> int -> int -> int = <fun>

\Again, first syntactic sugar for second |

8/28/12 37



i Partial application of functions

‘Iet add_threexyz=x+vy + z;;

# let h = add_three 5 4;;
val h : int -> int = <fun>
#h 3;;

-1int =12

#h7;:;

-1 int =16

8/28/12

38



i Functions as arguments

# let thrice f x = f (f (f xX));;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
# let g = thrice plus_two;;

val g : int -> int = <fun>

#g4;;

-:int =10

# thrice (fun s -> "Hil "  s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

8/28/12

39



i Question

s Observation: Functions are first-class values
in this language

= Question: What value does the environment
record for a function variable?

s Answer: a closure

8/28/12 40



i Save the Environment!

= A closureis a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:
f — < (vl,..,vn) — exp, ps >

= Where p¢ is the environment in effect when f
is defined (if f is @ simple function)

8/28/12 41



i Closure for plus_x

= When plus_x was defined, had environment:

Pplus. x = X —=12, ...,y —= 24, ...}
= Closure for plus_x:

<y — Y + X, pplUS_X >

= Environment just after plus_x defined:

1Plus_X — <y =y + X, ppiys x >F + Pplus_x

8/28/12 42



i Evaluation of Application of plus_x::

= Have environment:
p ={plus_ x - <y —=vy + ¥, Pplus_x 7 -+ 7
y—3, ..}
where Pplus x = X—=12, ...,y — 24, ..}
= Eval (plus_x vy, p) rewrites to

= Eval (app <y =y + X, ppjys_x > 3 p)
rewrites to

= Eval (y + %, {y — 3} +pp|us_x) rewrites to
= Eval (3 + 12, pplus_x) = 15

8/28/12 43



#
va
#

#

i Functions on tuples

et plus_pair (h,m) = n + m;;
plus_pair : int * int -> int = <fun>
dlus_pair (3,4);;

int =7/

let double x = (x,X);;

val double : 'a -> 'a * 'a = <fun>
# double 3;;

int * int = (3, 3)

# double "hi";;

string * string = ("hi", "hi")

8/28/12

44



i Match Expressions

# let triple_to_pair triple =

triple Each clause: pattern on
left, expression on right
(0, X, y) — (X, ¥)
*Each x, y has scope of

(X, 0,¥) = (X, ¥) only its clause

(X, Y, _) (X, y);; |<Use first matching clause

val triple_to_pair : int * int * int -> int * int =
<fun>

8/28/12 45



i Closure for plus_pair

= ASSUME Pus pair WaS the environment just
before plus_pair defined

= Closure for plus_pair:
<(h,m) - n+ m, Pplus._pair>
= Environment just after plus_pair defined:
{plus_pair — <(n,m) — n + m, ppys pair >

T Pplus_pair

8/28/12 46



i Evaluation of Application with Closures

= In environment p, evaluate left term to closure,
C = <(Xy..,X,) = b, p>

s (X4,...,X,) variables in (first) argument
= Evaluate the right term to values, (vq,...,Vv,)
= Update the environment p to

0 =Xy = Vyyoee, Xy, =V, 3+ p

= Evaluate body b in environment p’

8/28/12 47



i Evaluation of Application of plus_pair

x Assume environment

p={X—3..,
plus_pair —<(n,m) —=n + m, s pair™>r +

pplus_pair
= Eval (plus_pair (4,X), p)=

« Eval (app <(n,m) =n + m, pyue pair™> (4,X), p)) =
s Eva (app <(n,m) —N + Mm, pp|us_pair> (413)1 p)) —
= Eval(n+m, {n->4, m->3}+ pplus_pair) =

= Eval (4 + 3,{n->4, m->3}+ p,us pair) = 7

8/28/12

48



i Curried vs Uncurried

= Recall

val add three : int -> int -> int -> int = <fun>
= How does it differ from

# let add_triple (u,v,w) =u+v + w;;

val add_triple : int * int * int -> int = <fun>

= add_three is curried:
= add_triple is uncurried

8/28/12 49



i Curried vs Uncurried

# add_triple (6,3,2);;
-int =11
# add_triple 5 4;;
Characters 0-10:
add_triple 5 4;;
NNNNANNNANNN
This function is applied to too many arguments,
maybe you forgot a ;'
# fun x -> add_triple (5,4,x);;
: int -> int = <fun>

8/28/12

50



i Scoping Question

Consider this code:

let x = 27;;
let f x =
let x = 5in
(fun x -> print_int x) 10;;

f12;;

What value is printed?
5

10

12
27

8/28/12 51




