Programming Languages and
Compilers (CS 421)

"

Elsa L Gunter
2112 SC, UluC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

8/28/12 1

‘ Contact Information - Elsa L Gunter

= Office: 2112 SC

= Office hours:
= Mondays 11:00am — 11:50am
= Tuesdays 3:30pm — 4:20pm
= Thursdays 12:30pm — 1:40pm
= Also by appointment

= Email: egunter@illinois.edu

8/28/12 2

i Contact Information - TAs

= Teaching Assistants Office: 0207 SC
= Kyle Blocher
= Email: blocherl@illinois.edu
= Hours: Tues 1:00pm — 1:50pm &
Thurs 11:00am — 11:50am
= Hassan Samee
= Email: sameel@illinois.edu
= Hours: Wed 1:30pm — 2:20pm &
Fri 4:00pm - 4:50pm

8/28/12 3

Course Website

» http://courses.engr.illinois.edu/cs421
= Main page - summary of news items
= Policy - rules governing course

= Lectures - syllabus and slides

= MPs - information about homework
= Exams

= Unit Projects - for 4 credit students
= Resources - tools and helpful info

= FAQ

8/28/12 4

’ Some Course References

= No required textbook.

= Essentials of Programming Languages (2nd Edition)
by Daniel P. Friedman, Mitchell Wand and
Christopher T. Haynes, MIT Press 2001.

= Compilers: Principles, Techniques, and Tools, (also
known as "The Dragon Book"); by Aho, Sethi, and
Uliman. Published by Addison-Wesley. ISBN:
0-201-10088-6.

= Modern Compiler Implementation in ML by Andrew
W. Appel, Cambridge University Press 1998

= Additional ones for Ocaml given separately

8/28/12 5

iCourse Grading

= Homework 20%
= About 12 MPs (in Ocaml) and 12 written assignments
= Submitted by handin on EWS linux machines
« MPs — plain text code that compiles; HWs — pdf
= Late submission penalty: 20% of assignments total value

= 2 Midterms - 20% each
= Inclass — Oct 9, Nov 13
= DO NOT MISS EXAM DATES!
= Final 40% - Dec 14, 7:00pm — 10:00pm
= Percentages are approximate
=« Exams may weigh more if homework is much better

8/28/12 6




‘ Course Homework

= You may discuss homeworks and their solutions
with others

= You may work in groups, but you must list
members with whom you worked if you share
solutions or solution outlines

= Each student must turn in their own solution
separately

= You may look at examples from class and other
similar examples from any source
= Note: University policy on plagiarism still holds - cite your

sources if you are not the sole author of your solution

= Problems from homework may appear verbatim, or

with some modification on exams

8/28/12 7

‘ Course Obijectives

= New programming paradigm
= Functional programming
= Tail Recursion
= Continuation Passing Style
= Phases of an interpreter / compiler
= Lexing and parsing
= Type checking
= Evaluation
= Programming Language Semantics
= Lambda Calculus
= Operational Semantics

8/28/12 8

i OCAML

= Compiler is on the EWS-linux systems at
= /usr/local/bin/ocaml

= A (possibly better, non-PowerPoint) text
version of this lecture can be found at

» http://course.engr.illinois.edu/class/cs421/
lectures/ocaml-intro-shell.txt

= For the OCAML code for today’s lecture see

s http://course.engr.illinois.edu/class/cs421/
lectures/ocaml-intro.ml

8/28/12 9

i WWW Addresses for OCAML

= Main CAML home:
http://caml.inria.fr/index.en.html

= To install OCAML on your computer see:
»___ http://caml.inria.fr/ocaml/release.en.html

8/28/12 10

’ References for CAML

= Supplemental texts (not required):

= The Objective Caml system release 3.09, by
Xavier Leroy, online manual

= Introduction to the Objective Caml
Programming Language, by Jason Hickey

= Developing Applications With Objective
Caml, by Emmanuel Chailloux, Pascal
Manoury, and Bruno Pagano, on O'Reilly
= Available online from course resources

8/28/12 1

iOCAML

= CAML is European descendant of original ML
= American/British version is SML
= O is for object-oriented extension

= ML stands for Meta-Language

= ML family designed for implementing
theorem provers

= It was the meta-language for programming the
“object” language of the theorem prover

= Despite obscure original application area, OCAML
is a full general-purpose programming language

8/28/12 12




iFeatures of OCAML

= Higher order applicative language
= Call-by-value parameter passing
= Modern syntax
= Parametric polymorphism

= Aka structural polymorphism
= Automatic garbage collection
= User-defined algebraic data types

= It's fast - winners of the 1999 and 2000 ICFP
Programming Contests used OCAML

8/28/12

13

iWhy learn OCAML?

= Many features not clearly in languages you
have already learned

= Assumed basis for much research in
programming language research

= OCAML is particularly efficient for
programming tasks involving languages (eg
parsing, compilers, user interfaces)

= Used at Microsoft for writing SLAM, a formal
methods tool for C programs

8/28/12 14

i Session in OCAML

% ocaml|
Objective Caml version 3.12.0

# [ Read-eval-print loop; expressions and
declarations

2+3 (* Expression *)
- int=5
#3<2;;
- : bool = false

8/28/12

15

i No Overloading for Basic Arithmetic Operations

#15 " 2;;
-:int =30
# 1.35 + 0.23;; (* Wrong type of addition *)
Characters 0-4:
1.35 + 0.23;; (* Wrong type of addition *)
NANANAN
Error: This expression has type float but an
expression was expected of type
int
#1.35 + 0.23;;
- : float = 1.58

8/28/12 16

No Implicit Coercion

# 1.0 * 2;; (* No Implicit Coercion *)
Characters 0-3:
1.0 * 2;; (* No Implicit Coercion *)
NAANAN
Error: This expression has type float but an
expression was expected of type
int

8/28/12

17

iSequencing Expressions

# 'Hithere";; (* has type string *)
- : string = "Hi there"

# "Hello world'n";; (* has type unit *)
Hello world

-runit=()

# (print_string "Bye\n"; 25);; (* Sequence of exp *)
Bye

-:int=25

8/28/12 18




iTerminology

= Output refers both to the result returned
from a function application

= As in + outputs integers, whereas +. outputs
floats

= And to text printed as a side-effect of a
computation
= As in print_string “\n" outputs a carriage return
= In terms of values, it outputs () (“unit”)

= We will standardly use “output” to refer to
the value returned

8/28/12 19

iDeclarations; Sequencing of Declarations

#lcix =2+ 3;;, (*declaration *)

valx:int=5

# lettest = 3 < 2;;

val test : bool = false

#leta=3letb =a+ 2;; (* Sequence of dec
*)

vala:int=3

valb:int=5

8/28/12 20

’ Environments

= Environments record what value is associated with
a given identifier

= Central to the semantics and implementation of a
language
= Notation
p = {name, — value,, name,— value,, ...}
Using set notation, but describes a partial function
= Often stored as list, or stack
= To find value start from left and take first match

8/28/12 21

* Global Variable Creation

#2+3;; (*Expression *)

// doesn't effect the environment

# lettest =3 < 2;; (* Declaration *)
val test : bool = false

/] p; = {test — false}
#leta=1letb=a+4;; (* Seq of dec *)
/| p; ={b—=5,a—1, test — false}

8/28/12 22

iNew Bindings Hide Old

/| p,={b—5,a—1,test — false}
leta = 3;;

= What is the environment after this
declaration?

8/28/12 23

‘ New Bindings Hide Old

/I p; ={b—5,a—1, test — false}
leta = 3;;

= What is the environment after this
declaration?

/l p3 ={a—3,b—5, test — false}

8/28/12 %




iLocaI let binding

/] p3;={a—3,b—5, test — false}
#letc=
b=a+a
Il ps={b—6}+p,
// ={b — 6, a — 3, test — false}
b *b;;
valc:int =36
/] ps={c—36,a— 3, b—05, test — false}
#b;;
-:int=5

8/28/12 25

iLocaI Variable Creation

// ps ={c—=36,b—5,a— 3, test — false}

#cib=5%*4

/] pe = {b — 20, c — 36, a — 3, test — false}
2*b;;

-:int =40

Il p7 = ps

#b;;

-rint=5

8/28/12 26

* Booleans (aka Truth Values)

# y
- : bool = true
# 7
- : bool = false

#y>x 25 0;;
-:int=25

8/28/12 27

‘ Booleans

#3>1 4 > 6;;

- : bool = false

#3>1/4>6;;

- : bool = true

# (print_string "Hi\n"; 3> 1) || 4 > 6;;
Hi

- : bool = true

# 3 > 1 || (print_string "Bye\n"; 4 > 6);;
- : bool = true

#100(4>6);;

- : bool = true

8/28/12 28

iTupIes

#lets = (5"hi".3.2);;

val s : int * string * float = (5, "hi", 3.2)

# let =s;; (* (a,b,c) is a pattern *)

vala:int=5

val b : string = "hi"

val ¢ : float = 3.2

# let x = 2, 9.3;; (* tuples don't require parens in
Ocaml *)

val x : int * float = (2, 9.3)

8/28/12 29

iTuples

# (*Tuples can be nested *)

let d = ((1,4,62),("bye",15),73.95);;

val d : (int * int * int) * (string * int) * float =
((1, 4, 62), ("bye", 15), 73.95)

# (*Patterns can be nested *)

let (p,(st,_),_) = d;; (* _ matches all, binds nothing
%

)
val p :int *int * int = (1, 4, 62)
val st : string = "bye"

8/28/12 30




iFunctions

# let plus_two 1 =n + 2;;

val plus_two : int -> int = <fun>

# plus_two 17;;

-:int =19

# let plus_two = n--n+2;;

val plus_two : int -> int = <fun>

# plus_two 14;;

-:int =16

|First definition syntactic sugar for second|

8/28/12 31

iUsing a nameless function

# (funx->x*3)5;; (* An application *)

-:int=15

# (funy->y+.2.0) (funz->z*3);;
(* As data *)

- : (float -> float) * (int -> int) = (<fun>,
<fun>)

Note: in fun v -> exp(v), scope of variable is
only the body exp(v)

8/28/12 32

* Values fixed at declaration time

#letx =12;;

val x :int =12

# letplus xy =y + x;;

val plus_x : int -> int = <fun>
# plus_x 3;;

What is the result?

8/28/12 33

* Values fixed at declaration time

#letx =12;;

val x :int =12

# let plus_ xy =y + X;;

val plus_x : int -> int = <fun>
# plus_x 3;;

-:int=15

8/28/12 34

iValues fixed at declaration time

# let x =7;; (* New declaration, not an
update *)

valx:int=7

# plus_x 3;;

What is the result this time?

8/28/12 35

‘ Values fixed at declaration time

# letx =7;; (* New declaration, not an
update *)

valx:int=7

# plus_x 3;;

-:int=15

8/28/12 36




‘ Functions with more than one argument

# letadd_threexyz=x+y + z;
val add_three : int -> int -> int -> int = <fun>
# let t = add_three 6 3 2;;
valt:int=11
# let add_three =
funx-> (funy-> (funz->x+vy +2);;
val add_three : int -> int -> int -> int = <fun>

|Again, first syntactic sugar for second |

8/28/12 37

‘ Partial application of functions

|let add_three xy z = X +y + 7;;

# let h = add_three 5 4;;
val h :int -> int = <fun>
#h3;;

-int =12

#h7;;

-:int =16

8/28/12 38

i Functions as arguments

# let thrice f x = f (f (f x));;

val thrice : (‘a -> 'a) -> 'a-> 'a = <fun>
# let g = thrice plus_two;;

val g : int -> int = <fun>

#4394,

-:int =10

# thrice (fun s -> "Hil " ~ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

8/28/12 39

i Question

= Observation: Functions are first-class values
in this language

= Question: What value does the environment
record for a function variable?

= Answer: a closure

8/28/12 40

’ Save the Environment!

= A closure is a pair of an environment and an
association of a sequence of variables (the
input variables) with an expression (the
function body), written:

f — < (v1,..,vn) — exp, pf >

= Where p¢ is the environment in effect when f
is defined (if f is a simple function)

8/28/12 4

iCIosure for plus_x

= When plus_x was defined, had environment:

pp|u5_x - {X — 12, g Yy — 24, }
= Closure for plus_x:

<y—=y+X Pplus_x >
= Environment just after plus_x defined:

{plUS_X — <y =Y +X, pplus_x >} + pplus_x

8/28/12 2




‘ Evaluation of Application of plus_x;;

= Have environment:
p =A{plus_x = <y =y + X, ppjys_x >/ - s
y—3, ..}
where Pplus x = {xX—=12,..,y— 24, .}
= Eval (plus_xy, p) rewrites to

= Eval (app <y =y + X, Pplus_x =~ 3,p)
rewrites to

= Eval (y + x, {y = 3} +Pplus_x ) rewrites to
= Eval 3+ 12, pp|us_x) =15

8/28/12 43

iFunctions on tuples

# let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>
# plus_pair (3,4);;

-rint=7

# let double x = (x,x);;

val double : 'a -> 'a * 'a = <fun>

# double 3;;

-rint *int = (3, 3)

# double "hi";;

- : string * string = ("hi", "hi")

8/28/12 44

* Match Expressions

# let triple_to_pair triple =

triple *Each clause: pattern on
left, expression on right
O, xy) ~ (xV)

*,0,y) = (x¥)
(x, Y, _) (x, y);; *Use first matching clause

*Each x, y has scope of
only its clause

val triple_to_pair : int * int * int -> int * int =
<fun>

8/28/12 45

* Closure for plus_pair

= Assume p,s pair Was the environment just
before plus_pair defined

= Closure for plus_pair:
<(n,m) = n+ M, Py pair™>
= Environment just after plus_pair defined:
{plus_pair - <(n,m) = n + m, Pplus_pair >}

* Pplus_pair

8/28/12 46

’ Evaluation of Application with Closures

= In environment p, evaluate left term to closure,
€ = <(Xy-.4X,) = b, p>

= (Xy,...,X,) variables in (first) argument
= Evaluate the right term to values, (vy,...,v,)
= Update the environment p to
p' = {X; = Vi) Xy =V 3+ p
= Evaluate body b in environment p’

8/28/12 o

iEvaluation of Application of plus_pair

= Assume environment
p={x—=3..,
plus_pair -<(n,m) —n + m, pplus_pair>} +

Pplus_pair
Eval (plus_pair (4,x), p)=

Eval (app <(n,m) —n + m, Pplus_pair™ (4x), p) =

Eval (app <(n,m) —n+m, pplus_pair> (413)1 P)) =

Eval(n + m,{n->4, m->3} + pp|us_pair) =

Eval (4 + 3, {n->4, m-> 3} + pyus pair) = 7

8/28/12 48




‘ Curried vs Uncurried

= Recall

val add_three : int -> int -> int -> int = <fun>
= How does it differ from

# let add_triple (u,v,w) =u + v + w;;

val add_triple : int * int * int -> int = <fun>

= add_three is curried,
= add_triple is uncurried

8/28/12 49

‘ Curried vs Uncurried

# add_triple (6,3,2);;
-rint =11
# add_triple 5 4;;
Characters 0-10:
add_triple 5 4;;
NANANNNNNNNAN
This function is applied to too many arguments,
maybe you forgot a *;'
# fun x -> add_triple (5,4,x);;
int -> int = <fun>

8/28/12 50

i Scoping Question

Consider this code:

let x = 27;;
let f x =
letx =5in
(fun x -> print_int x) 10;;

f12;;

What value is printed?
5

10

12

27

8/28/12 51




