
CS421 Fall 2012 Midterm 2

Name:

NetID:

• You have 75 minutes to complete this exam.

• This is a closed-book exam. You are allowed one 3× 5 inch (or smaller)
card of notes (both sides may be used). This card is not shared. All
other materials (e.g., calculators and cell phones), except writing utensils
are prohibited.

• Do not share anything with other students. Do not talk to other students.
Do not look at another students exam. Do not expose your exam to easy
viewing by other students. Violation of any of these rules will count as
cheating.

• If you believe there is an error, or an ambiguous question, you may seek
clarification from myself or one of the TAs. You must use a whisper, or
write your question out. Speaking out aloud is not allowed.

• Including this cover sheet and rules at the end, there are 17 pages to the
exam, including two blank pages for workspace. Please verify that you
have all 17 pages.

• Please write your name and NetID in the spaces above, and also in the
provided space at the top of every sheet.

CS421 Fall 2012 Midterm #2 NetID:

Question Points Bonus Points Score

1 13 0

2 8 0

3 13 0

4 15 0

5 15 0

6 24 0

7 12 0

8 0 10

Total: 100 10

Page 2

CS421 Fall 2012 Midterm #2 Name:

Problem 1. (13 points)
Use the unification algorithm described in class and in MP7 to give a most general unifier
for the following set of equations (unification problem), if one exists, or to say why if
one does not. In this problem, we use = as the separator for constraints. The uppercase
letters X, Y , Z, and W denote variables of unification. The lowercase letters f , g, and
h are term constructors of arity 2, 3, and 1 respectively (i.e. take two, three or one
argument(s), respectively). Show all your work by listing the operations performed in
each step of the unification and the result of that step.

Unify{(f(X, g(Y, Z, h(W))) = f(g(Z, Y, Z), X))}

Solution:

Rule Resulting Equations / Substitution
Given
Unify{(f(X, g(Y, Z, h(W))) = f(g(Z, Y, Z), X))}

by Decompose (f(X, g(Y, Z, h(W))) = f(g(Z, Y, Z), X))
= Unify{(X = g(Z, Y, Z)); (g(Y, Z, h(W)) = X)}

by Eliminate (X = g(Z, Y, Z))
= Unify{(g(Y, Z, h(W)) = g(Z, Y, Z))} ◦ {X 7→ g(Z, Y, Z)}

by Decompose (g(Y, Z, h(W)) = g(Z, Y, Z))
= Unify{(Y = Z); (Z = Y); (h(W) = Z)} ◦ {X 7→ g(Z, Y, Z)}

by Eliminate (Y = Z)
= Unify{(Z = Z); (h(W) = Z)} ◦ {Y 7→ Z} ◦ {X 7→ g(Z, Y, Z)}
= Unify{(Z = Z); (h(W) = Z)} ◦ {X 7→ g(Z,Z, Z);Y 7→ Z}

by Delete (Z = Z)
= Unify{(h(W) = Z)} ◦ {X 7→ g(Z,Z, Z);Y 7→ Z}

by Orient (h(W) = Z)
= Unify{(Z = h(W))} ◦ {X 7→ g(Z,Z, Z);Y 7→ Z}

by Eliminate (Z = h(W))
= Unify{} ◦ {Z 7→ h(W)} ◦ {X 7→ g(Z,Z, Z);Y 7→ Z}
= {X 7→ g(h(W), h(W), h(W));Y 7→ h(W);Z 7→ h(W)}

Page 3

CS421 Fall 2012 Midterm #2 NetID:

Problem 2. (8 points)
Recall that in MP6 and MP7 we used the following OCaml types to represent the types
of MicroML, the language we have been implementing since MP5:

type typeVar = int

type monoTy = TyVar of typeVar | TyConst of (string * monoTy list)

Further recall that we represented substitutions of monoTys for typeVars by the type
(typeVar * monoTy) list. The first component of a pair is the index (or “name”) of a
type variable. The second is the type that should be substituted for that type variable.
If an entry for a type variable index does not exist in the list, the identity substitution
should be assumed for that type variable (i.e. the variable is substituted with itself).

(a) (4 points) Implement the function subst fun that converts a list representing a
substitution into a function that takes a typeVar and returns a monoTy.

let subst_fun s = ...

val subst_fun : (typeVar * monoTy) list -> typeVar -> monoTy = <fun>

let subst = subst_fun [(5, mk_fun_ty bool_ty (TyVar(2)))];;

val subst : typeVar -> monoTy = <fun>

subst 1;;

- : monoTy = TyVar 1

subst 5;;

- : monoTy = TyConst ("->", [TyConst ("bool", []); TyVar 2])

Solution:

let rec subst_fun subst m =

match subst with [] -> TyVar m

| (n,ty) :: more -> if n = m then ty else subst_fun more m

Page 4

CS421 Fall 2012 Midterm #2 Name:

(b) (4 points) Implement the monoTy lift subst function that lifts a substitution φ
to operate on monoTys. A substitution φ, when lifted, replaces all the type variables
occurring in its input type with the corresponding types.

let rec monoTy_lift_subst s = ...

val monoTy_lift_subst : (typeVar * monoTy) list -> monoTy -> monoTy = <fun>

monoTy_lift_subst [(5, mk_fun_ty bool_ty (TyVar(2)))]

(TyConst ("->", [TyVar 1; TyVar 5]));;

- : monoTy =

TyConst ("->", [TyVar 1; TyConst ("->", [TyConst ("bool", []); TyVar 2])])

Solution:

let rec monoTy_lift_subst subst monoTy =

match monoTy

with TyVar m -> subst_fun subst m

| TyConst(c, typelist) ->

TyConst(c, List.map (monoTy_lift_subst subst) typelist)

Page 5

CS421 Fall 2012 Midterm #2 NetID:

Problem 3. (13 points)
Consider the set of all strings over the alphabet { [,], 0, 1, ; } (i.e. left square bracket,
right square bracket, 0, 1 and semicolon) that describe lists of non-empty sequences of
0’s and 1’s, separated by semicolon, preceded by a left square bracket and followed by a
right square bracket. This set of strings includes []. Singleton lists (e.g. [010] contain no
semicolons.

(a) (5 points) Write a regular expression describing the set given above. In writing a
regular express describing this set of strings, you may use the notation for basic
regular expressions (Kleene’s notation), or you may use ocmallex syntax, but these
are the only syntax allowed.

Solution:
[(ε ∨ (((0 ∨ 1)(0 ∨ 1)∗ ;)∗ (0 ∨ 1)(0 ∨ 1)∗))]

(b) (8 points) Write a right regular grammar describing the same set of strings.

Solution:

< list >::= [< contents >
< contents >::=]

| 0 < contents >
| 1 < contents >
| 0 < semicolon >
| 1 < semicolon >

< semicolon >::= ; < num and contents >
| ; < num >

< num and contents >::= 0 < contents >
| 1 < contents >

< num >::= 0 < num >
| 1 < num >
| 0
| 1

Page 6

CS421 Fall 2012 Midterm #2 Name:

Problem 4. (15 points)
Given the following BNF grammar, for each of the following strings, give a parse tree for
it, if it parses starting with < Tm >, or write None exists if it does not parse starting
with < Tm >. The terminals for this grammar are { @, ->, b, d, x, y, z }. The
non-terminal are < Tm >, < Pat >, and < V ar >.

< Tm >::= < Pat > @ < Tm > | < V ar >
< Pat >::= < V ar > -> < Tm > | < Pat > -> b < Tm > d

< V ar >::= x | y | z

(a) (3 points) x -> y @ z

Solution: The parse tree is:
< Tm >
���

< Pat > @

HHH
< Tm >

���
< V ar > ->

HHH
< Tm > < V ar >

x < V ar > z

y

Page 7

CS421 Fall 2012 Midterm #2 NetID:

Given the following BNF grammar, for each of the following strings, give a parse tree
for it, if it parses starting with < Tm >, or write None exists if it does not parse
starting with < Tm >. The terminals for this grammar are { @, ->, b, d, x, y, z }.
The non-terminal are < Tm >, < Pat >, and < V ar >.

< Tm >::= < Pat > @ < Tm > | < V ar >
< Pat >::= < V ar > -> < Tm > | < Pat > -> b < Tm > d

< V ar >::= x | y | z

(b) (5 points) x -> y -> b y -> x @ z -> x @ y d

Solution: None exists. Every < Tm > must end in a < V ar > (i.e. one of x,
y, or z), but this string ends in a d.

Page 8

CS421 Fall 2012 Midterm #2 Name:

Given the following BNF grammar, for each of the following strings, give a parse tree
for it, if it parses starting with < Tm >, or write None exists if it does not parse
starting with < Tm >. The terminals for this grammar are { @, ->, b, d, x, y, z }.
The non-terminal are < Tm >, < Pat >, and < V ar >.

< Tm >::= < Pat > @ < Tm > | < V ar >
< Pat >::= < V ar > -> < Tm > | < Pat > -> b < Tm > d

< V ar >::= x | y | z

(c) (7 points) x -> y -> b y -> x @ z d @ x -> x @ z

Solution: The parse tree is:
< Tm >
�����

PPPPP
< Pat > @ < Tm >
�����
��� �� @@

HHH
< Pat > -> b < Tm > d

��
Q
QQ
PPPPP

< Pat > @ < Tm >
�����
�

�� AA
< V ar > -> < Tm >

�
�� CC

H
HH

< Pat > @ < Tm >

H
HH
PPPPP

< V ar > -> < Tm >

PPPPP
< V ar >

�� �� @@ AA
x < V ar > < V ar > ->< Tm >< V ar > x < V ar > z

y y < V ar > z x

x

Page 9

CS421 Fall 2012 Midterm #2 NetID:

Problem 5. (15 points)
Consider the following grammar over the terminal alphabet { f, (,), ++, x, , y, z }.

< exp >::= f < exp > | < exp > ++ | (< exp >) | < var >
< var >::= x | y | z

(a) (5 points) Show that this grammar is ambiguous (using the definition of an ambigu-
ous grammar).

Solution: The term f x ++ has two parse trees.

< exp >

�
�
�

@
@
@

< exp > ++

�
�
�

@
@
@

f < exp >

< var >

x

< exp >

�
�
�

@
@
@

f < exp >

�
�
�

@
@
@

< exp > ++

< var >

x

(b) (10 points) Disambiguate this grammar by writing a new grammar with start symbol
< exp > accepting the same language accepted by < exp > above, and such that ++
has higher precedence than f.

Solution:

< exp >::= f < exp > | < no f >
< no f >::= < no f > ++ | (< exp >) | x | y | z

Page 10

CS421 Fall 2012 Midterm #2 Name:

Workspace

Page 11

CS421 Fall 2012 Midterm #2 NetID:

Problem 6. (24 points)
Consider the following grammar:

< term >=:: + < term > < term > | ~ < term > | 0 | 1

(a) (3 points) Write an Ocaml data type token for the tokens that a lexer would
generate as input to a parser for this grammar.

Solution:

type token = PLUS | NEG | ZERO | ONE

(b) (6 points) Write an Ocaml data type term to parse tree generated by < term >.

Solution:

type term = Plus of term * term | Neg of term | Zero | One

Page 12

CS421 Fall 2012 Midterm #2 Name:

(c) (15 points) Consider the following grammar:

< term >=:: + < term > < term > | ~ < term > | 0 | 1

Using the types you gave in parts a) and b), write an Ocaml recursive descent
parser parse: token list -> term that, given a list of tokens, returns term

representing a < term > parse tree. You should use raise (Failure no parse)

for cases where no parse exists.

Solution:

let rec term tokens =

match tokens

with PLUS :: tokens_after_PLUS ->

(match term tokens_after_PLUS

with (term1, tokens_after_term1) ->

(match term tokens_after_term1

with (term2, tokens_after_term2) ->

(Plus (term1, term2),tokens_after_term2)))

| NEG :: tokens_after_NEG ->

(match term tokens_after_NEG

with (term, tokens_after_term) ->

(Neg term, tokens_after_term))

| ZERO :: toks -> (Zero, toks)

| ONE :: toks -> (One, toks)

| [] -> raise (Failure "no parse")

let parse tokens =

match term tokens

with (term, []) -> term

| _ -> raise (Failure "no parse")

Page 13

CS421 Fall 2012 Midterm #2 NetID:

Problem 7. (12 points)
Given the following grammar over nonterminal <m>, <e> and <t>, and terminals z, o, l,
r, p and eof, with start symbol <m>:

P0 : < m >::=< e > eof

P1 : < e >::=< t >
P2 : < e >::=< t > p < e >
P3 : < t >::= z

P4 : < t >::= o

P5 : < t >::= l < e > r

and Action and Goto tables generated by YACC for the above grammar:

Action Goto
State z o l r p [eof] <m> <e> <t>

st1 s3 s4 s5 err err err st2 st7
st2 err err err err err a
st3 r3 r3 r3 r3 r3 r3
st4 r4 r4 r4 r4 r4 r4
st5 s3 s4 s5 err err err st8 st7
st6 err err err err err a
st7 err err err r1 s9 r1
st8 err err err s10 err err
st9 s3 s4 s5 err err err st11 st7
st10 r5 r5 r5 r5 r5 r5
st11 r2 r2 r2 r2 r2 r2

where sti is state i, si abbreviates shift i, ri abbreviates reduce i, a abbreviates accept
and [eof]] means we have reached the end of input, describe how the string lzpor[eof]

would be parsed with an LR parser using these productions and tables by filling in the
table on the next page. I have given you the first 5 cells in the first two rows to get you
started. Thereafter, there are more blank lines than you should need to fill in the rest.

Page 14

CS421 Fall 2012 Midterm #2 Name:

Solution:

Stack Current String Action to be taken

Empty lzpor[eof] Initialize stack,
go to state 1

st1 lzpor[eof] shift l, go to state 5

st1::l::st5 zpor[eof] shift z, go to state 3

st1::l::st5::z::st3 por[eof] reduce by rule 3,
go to state 7

st1::l::st5::<t>::st7 por[eof] shift p, go to state 9

st1::l::st5::<t>::st7::p::st9 or[eof] shift o, go to state 4

st1::l::st5::<t>::st7::p::st9::o::st4 r[eof] reduce by rule 4,
go to state 7

st1::l::st5::<t>::st7::p::st9::<t>::st7: r[eof] reduce by rule 1,
go to state 11

st1::l::st5::<t>::st7::p::st9::<e>::st11 r[eof] reduce by rule 2,
go to state 8

st1::l::st5::<e>::st8 r[eof] shift r, go to state 10

st1::l::st5::<e>::st8::r::st10 [eof] reduce by rule 5,
go to state 7

st1::<t>::st7 [eof] reduce by rule 1,
go to state 2

st1::<e>::st2 [eof] accept

Page 15

CS421 Fall 2012 Midterm #2 NetID:

8. (10 points (bonus)) Disambiguate the following grammar with start symbol < comm >:

< comm >::= < var > <= < exp >
|if < bool > then < comm > else < comm >
|if < bool > then < comm >

< exp >::= < var > | 0 | 1 | inc < exp > | dec < exp >
< var >::= x | y | z
< bool >::= true | false | < var > = < var >

Solution:

< comm >::= |if < bool > then < comm >
| < no missing else >

< no missing else >::= < var > <= < exp >
|if < bool > then < no missing else > else < comm >

< exp >::= < var > | 0 | 1 | inc < exp > | dec < exp >
< var >::= x | y | z
< bool >::= true | false | < var > = < var >

Page 16

CS421 Fall 2012 Midterm #2 Name:

Workspace

Page 17

