
CS421 Fall 2012 Midterm 1

Name:

NetID:

• You have 75 minutes to complete this exam.

• This is a closed-book exam. You are allowed one 3× 5 inch (or smaller)
card of notes (both sides may be used). This card is not shared. All
other materials (e.g., calculators), except writing utensils are prohibited.

• Do not share anything with other students. Do not talk to other students.
Do not look at another students exam. Do not expose your exam to easy
viewing by other students. Violation of any of these rules will count as
cheating.

• If you believe there is an error, or an ambiguous question, you may seek
clarification from myself or one of the TAs. You must use a whisper, or
write your question out. Speaking out aloud is not allowed.

• Including this cover sheet and rules at the end, there are 14 pages to the
exam, including one blank page for workspace. Please verify that you
have all 14 pages.

• Please write your name and NetID in the spaces above, and also in the
provided space at the top of every sheet.

CS421 Fall 2012 Midterm #1 NetID:

Question Points Bonus Points Score

1 6 0

2 10 0

3 10 0

4 13 0

5 11 0

6 12 0

7 18 0

8 20 0

9 0 10

Total: 100 10

Page 2

CS421 Fall 2012 Midterm #1 Name:

Problem 1. (6 points)
Suppose that the following code is input one line at a time into OCaml:

let x = "X";;

let y = 3;;

let shift x z = x + y + z;;

let x = 2;;

let y = 17;;

let a = shift x;;

let b = shift y 4;;

let c = shift (3, 5);;

(a) (2 points) Tell what, if anything, is returned for a. If no value is returned, explain
why not.

Solution: a is bound to a function of one integer argument that will return the
result of adding 5 to it that argument.

(b) (2 points) Tell what, if anything, is returned for b. If no value is returned, explain
why not.

Solution: 24

(c) (2 points) Tell what, if anything, is returned for c. If no value is returned, explain
why not.

Solution: No value is returned because there is a type error. The first argument
to f must be an int, but here it is applied to an (int * int).

Page 3

CS421 Fall 2012 Midterm #1 NetID:

Problem 2. (10 points)
Write a function interleave : ’a list -> ’a list -> ’a list that takes two lists
and returns a list. The first element of the new list should be the first element of the
first list and the second element of the new list should be the first element of the second
list; then, the third element of the new list will be the second element of the first list and
the fourth element of the new list will be the second element of the second list, and so
on. If one list is longer than the other, put the extra elements on the end of the new list.
Also, if either list is empty, interleave returns the other list.

let rec interleave xs ys = ...;;

val interleave : ’a list -> ’a list -> ’a list = <fun>

interleave [1;2;5] [3;4];;

- : int list = [1; 3; 2; 4; 5]

Solution:

let rec interleave xs ys =

match xs with [] -> ys

| (x::more_xs) ->

(match ys with [] -> xs

| (y::more_ys) -> x :: y :: (interleave more_xs more_ys))

Problem 3. (10 points)
What is printed by the following code?

let f = fun x ->

let a = (print_string "A"; 5)

in fun y -> (print_string "B\n"; a + x + y)

in let h = f 1 in f (h 3) (h 2)

You do not have to compute the integer value returned; just the sequence of characters
printed.

Solution:

AB

B

AB

Page 4

CS421 Fall 2012 Midterm #1 Name:

Problem 4. (13 points)
Consider the following OCaml code:

let a = 3;;

let b = 2;;

let f =

let b = 7

in fun x -> a + b;;

let x = f a;;

Describe the final environment that results from the execution of the above code if
execution is begun in an empty environment. Your answer should be written as a set
of bindings of variables to values, with only those bindings visible at the end of the
execution present. Your answer should be a precise mathematical answer, with a precise
description of values involved in the environment. You may name your environments and
closures, and use their names in describing other environments, but all applications of
the update operator (+) should be expanded out, and not appear in your final answer.

Solution:

{a 7→ 3; b 7→ 2; f 7→ 〈x→ a + b, {a 7→ 3; b 7→ 7}〉; x 7→ 10}

Page 5

CS421 Fall 2012 Midterm #1 NetID:

Problem 5. (11 points)
Write a function split: (’a -> bool) -> ’a list -> ’a list * ’a list, that,
when applied to a test function f, and a list lst, returns a pair of lists. The first list of
the pair should contain every element x of lst for which (f x) is true; and the second
list contains every element for which (f x) is false. The order of the elements in the
returned lists should be the same as in the original list.

(a) (5 points) Write the split using only forward recursion, and no other form of
recursion, directly or indirect. You may not use any library functions.

Solution:

let rec split test list =

match list with [] -> ([],[])

| (first::rest) ->

let (true_list, false_list) = split test rest

in if test first then (first :: true_list, false_list)

else (true_list, first:: false_list)

(b) (6 points) Write a base value split base:’a list * ’b list and a step function
split step:(’a -> bool) -> ’a -> ’a list * ’a list -> ’a list * ’a list

such that List.fold right (split step f) lst split base behaves the same
as the split f lst as described in part a.

Solution:

let split_base = ([],[])

let split_step test first (true_list, false_list) =

if test first then (first ::true_list, false_list)

else (true_list, first :: false_list)

Page 6

CS421 Fall 2012 Midterm #1 Name:

Problem 6. (12 points)
Consider the following OCaml function:

let rec filter test list =

match list with [] -> []

| (first :: rest) ->

let rest_result = filter test rest

in if test first then (test :: rest_result) else rest_result

Write the function
filterk : (’a -> (bool -> ’b) -> ’b) -> ’a list -> (’a list -> ’b) -> ’b

that is the CPS transformation of the above code. You may assume you have the following
CPS transformation of cons:

let consk x y k = k (x :: y);;

val consk : ’a -> ’a list -> (’a list -> ’b) -> ’b = <fun>

Be careful to take note of the type of the function filterk, and all its arguments.

Solution:

let consk x y k = k (x :: y)

let rec filterk testk list k =

match list with [] -> k []

| (first :: rest) ->

filterk testk list

(fun rest_result ->

testk first

(fun b -> if b then consk first rest_result k

else k rest_result))

Page 7

CS421 Fall 2012 Midterm #1 NetID:

Problem 7. (18 points)

(a) (8 points) Give an OCaml data type to represent trees built from three kinds of
nodes: Black, Red, and Blue. Associated with each node is an integer weight. In
addition, each Red node has one subtree associated with it, and each Blue node
has two subtrees associated with it, a left subtree and a right subtree.

Your representation should be exact: every tree should have a unique representation
using your data type, and every thing that could be represented by your type should
be a tree as described here.

Solution:

type tree = Black of int

| Red of (int * tree)

| Blue of (tree * int * tree)

(b) (10 points) Write a function blueWeight:tree -> int that adds up the weights
of all the Blue nodes in the tree.

Solution:

let ref blueWeight tree =

match tree

with Black n -> 0

| Red (n,tr) -> blueWeight tr

| Blue (left_tree, n, right_tree) ->

(blueWeight left_tree) + n + (blueWeight right_tree)

Page 8

CS421 Fall 2012 Midterm #1 Name:

Workspace

Page 9

CS421 Fall 2012 Midterm #1 NetID:

Problem 8. (20 points)
Give a type derivation for the following type judgment:

{ } |- let x = 7 in (fun x -> if x then 1 else 0) (x + 2 > 8) : int

You may use the attached sheet of typing rules. Label every use of a rule with the rule
used. You may abbreviate, provided it must be totally clear which rule is meant by
which abbreviation. You may find it useful to break your derivation into pieces. If you
do, give names to your pieces, which you may then use in describing the whole. Your
environments should be mathematical mappings here, and NOT implementations as you
might find in a program.

Solution: Let FunTree =

Var
{x:bool} ` x:bool

Const
{x:bool} ` 1:int

Const
{x:bool} ` 0:int

If
{x:bool} ` (if x then 1 else 0):int

Fun
{x:int} ` (fun x -> if x then 1 else 0):bool -> int

Then the main type derivation is:

Const
{ } ` 7:int

FunTree

Var
{x:int} ` x:int

Const
{x:int} ` 2:int

Arith
{x:int} ` (x + 2):int

Const
{x:int} ` 8:int

Rel
{x:int} ` (x + 2 > 8):bool

App
{x:int} ` (fun x -> if x then 1 else 0)

(x + 2 > 8) : int
Let

{ } ` let x = 7 in (fun x -> if x then 1 else 0) (x + 2 > 8):int

Page 10

CS421 Fall 2012 Midterm #1 Name:

Workspace

Page 11

CS421 Fall 2012 Midterm #1 NetID:

9. (10 points (bonus)) Give code implementing OCaml’s
fold left : : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

from the List library, and give the CPS transformation of your code.

Solution:

let rec fold_left f acc list =

match list with [] -> acc

| (x :: xs) -> fold_left f (f acc x) xs

let rec fold_leftk fk acc list k =

match list with [] -> k acc

| (x :: xs) -> fk acc x (fun new_acc -> fold_leftk fk new_acc xs k)

Page 12

CS421 Fall 2012 Midterm #1 Name:

A Monomoprhic Typing Rules

Constants:

Γ ` n : int
Const

where n is an integer constant

Γ ` true : bool
Const

Γ ` false : bool
Const

Variables:

Γ ` x : τ
Var

where τ = Γ(x)

Primitive Operators ⊕ ∈ {+,−, ∗, mod, . . .}:

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 ⊕ e2 : int
Arith

Relations (∼ ∈ {<,>,=,≤,≥}):

Γ ` e1 : τ Γ ` e2 : τ

Γ ` e1 ∼ e2 : bool
Rel

Connectives:

Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 && e2 : bool
Conn

Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 || e2 : bool
Conn

If then else rule:

Γ ` ec : bool Γ ` et : τ Γ ` ee : τ

Γ ` if ec then et else ee : τ
If

Application rule: Function rule:

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
App

[x : τ1] + Γ ` e : τ2

Γ ` fun x -> e : τ1 → τ2
Fun

Let rule: Let Rec rule:

Γ ` e1 : τ1 [x : τ1] + Γ ` e2 : τ2

Γ ` let x = e1 in e2 : τ2
Let

[x : τ1] + Γ ` e1 : τ1 [x : τ1] + Γ ` e2 : τ2

Γ ` let rec x = e1 in e2 : τ2
Rec

Page 13

CS421 Fall 2012 Midterm #1 NetID:

B Scratch Space

Page 14

