

Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata
- Whole family more of grammars and automata - covered in automata theory

BNF Grammars

- Start with a set of characters, $\mathbf{a}, \mathbf{b}, \mathbf{c}, \ldots$ - We call these terminals
- Add a set of different characters, $\mathbf{X}, \mathbf{Y}, \mathbf{Z}, \ldots$
- We call these nonterminals
- One special nonterminal S called start symbol

Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs

10/16/08
2

Sample Grammar

- Language: Parenthesized sums of 0's and 1's
- <Sum> ::= 0
- <Sum >::=1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)

BNF Grammars

- BNF rules (aka productions) have form

$$
\mathbf{X}::=y
$$

where \mathbf{X} is any nonterminal and y is a string of terminals and nonterminals

- BNF grammar is a set of BNF rules such that every nonterminal appears on the left of some rule

Sample Grammar

- Terminals: $01+$ ()
- Nonterminals: <Sum>
- Start symbol = <Sum>
- <Sum> ::=0
- <Sum >::=1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)
- Can be abbreviated as
<Sum> ::=0|1
| <Sum> + <Sum> | (<Sum>)
10/16/08

BNF Derivations

- Start with the start symbol:
<Sum> =>

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >

BNF Derivations

- Pick a non-terminal:
<Sum> => <Sum> + <Sum >

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= (<Sum>)
<Sum> => <Sum> + <Sum >

$$
=>(\text { SSum }>)+\text { SSum> }
$$

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { SUum }>)+\text { <Sum }> \\
& =>(\text { <Sum }>+ \text { SSum }>)+\text { SUum }>
\end{aligned}
$$

BNF Derivations

- Pick a rule and substitute:
- <Sum >::= 1
<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
$=>(\langle$ Sum $>+1)+$ <Sum $>$

BNF Derivations

- Pick a non-terminal:

$$
\begin{aligned}
<\text { Sum }> & =>\text { <Sum }>+ \text { SUum }> \\
& =>(<\text { Sum }>)+\text { <Sum }> \\
& =>(\text { Sum }>+ \text { <Sum })+<\text { Sum }> \\
& =>(\text { SUum }>+1)+\text { <Sum }>
\end{aligned}
$$

BNF Derivations

- Pick a rule and substitute:
- <Sum >::= 0
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { <Sum }>)+\text { <Sum }> \\
& =>(\text { <Sum }>+ \text { <Sum }>)+\text { <Sum }> \\
& =>(\text { SUum }>+1)+\text { <Sum }> \\
& =>(\text { SUum }>+1)+0
\end{aligned}
$$

BNF Derivations

- Pick a rule and substitute
- <Sum> ::= 0
<Sum> => <Sum> + <Sum >

$$
=>(\text { SSum }>)+\text { SSum }>
$$

$$
=>(\text { SSum }>+ \text { <Sum }>)+\text { SSum }>
$$

$=>(\langle$ Sum $>+1)+\langle$ Sum \rangle
$=>(\langle$ Sum $\rangle+1) 0$
$=>(0+1)+0$

<Sum> ::= $0|1|$ <Sum> + <Sum> | (<Sum>)

<Sum> =>

BNF Derivations

- Pick a non-terminal:

$$
\begin{aligned}
<\text { Sum }> & =><\text { Sum }>+<\text { Sum }> \\
& =>(<\text { Sum }>)+\text { <Sum }> \\
& =>(\text { Sum }>+ \text { SUum }>)+\text { <Sum }> \\
& =>(<\text { Sum }>+1)+<\text { Sum }> \\
& =>(<\text { Sum }>+1)+0
\end{aligned}
$$

BNF Derivations

- $(0+1)+0$ is generated by grammar

$$
\begin{aligned}
<\text { Sum }> & =><\text { Sum }>+<\text { Sum }> \\
& =>(\text { SSum }>)+\text { <Sum }> \\
& =>(<\text { Sum }>+ \text { SUum }>)+\text { <Sum }> \\
& =>(\text { Sum }>+1)+\text { <Sum }> \\
& =>(\text { Sum }>+1)+0 \\
& =>(0+1)+0
\end{aligned}
$$

BNF Semantics

- The meaning of a BNF grammar is the set of all strings consisting only of terminals that can be derived from the Start symbol

Extended BNF Grammars

Alternatives: allow rules of from $\mathrm{X}::=y \mid z$

- Abbreviates $\mathrm{X}::=\mathrm{y}, \mathrm{X}::=z$
- Options: X::=y[v]z
- Abbreviates $\mathrm{X}::=y \mathrm{vz}, \mathrm{X}::=y z$
- Repetition: $X::=y\{v\}^{*} z$
- Can be eliminated by adding new nonterminal V and rules $\mathrm{X}::=y z, \mathrm{X}::=\mathrm{yVz}$, $\mathrm{V}::=v, \mathrm{~V}::=\mathrm{V}$

Example

- Regular grammar:
<Balanced> ::= ε
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1 <Balanced>
<ZeroAndMore> ::= 0<Balanced>
- Generates even length strings where every initial substring of even length has same number of 0 's as 1 's

Example

- Consider grammar:

$$
\begin{aligned}
& \text { <exp> }::=\text { <factor> } \\
& \mid<\text { factor> + <factor> } \\
& \text { <factor> }::=\text { <bin> } \\
& \mid \text { <bin> * <exp> } \\
& \text { <bin> : }:=0 \mid 1
\end{aligned}
$$

- Problem: Build parse tree for 1 * $1+0$ as an <exp>

Regular Grammars

- Subclass of BNF
- Only rules of form <nonterminal>::=<terminal> <nonterminal > or <nonterminal>::=<terminal>
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)

10/16/08

Parse Trees

- Graphical representation of derivation
- Each node labeled with either non-terminal or terminal
- If node is labeled with a terminal, then it is a leaf (no sub-trees)
- If node is labeled with a terminal, then it has one branch for each character in the righthand side of rule used to substitute for it
- $1^{*} 1+0: \quad$ exp>
<exp> is the start symbol for this parse tree

Example cont.

- $1^{*} 1+0:$

<exp> <factor>

Use rule: <exp> ::= <factor>

Example cont.

- $1 * 1+0$:

Use rules: <bin> ::=1 and <exp> ::= <factor> + <factor>

Example cont.

- $1^{*} 1+0:$

Use rules: <bin> ::=1|0

Example cont.

- 1 * $1+0: \quad<\exp >$

Fringe of tree is string generated by grammar 10/16/08

Your Turn: 1 * $0+0$ * 1

Example

- Recall grammar:
<exp> ::= <factor> | <factor> + <factor> <factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1
- datatype exp = Factor2Exp of factor
| Plus of factor * factor
and factor $=$ Bin2Factor of bin
| Mult of bin * exp
and bin $=$ Zero \mid One

Example cont.

- Can be represented as

Factor2Exp
(Mult(One,
Plus(Bin2Factor One, Bin2Factor Zero)))

Parse Tree Data Structures

- Parse trees may be represented by SML datatypes
- One datatype for each nonterminal
- One constructor for each rule
- Defined as mutually recursive collection of datatype declarations

Example cont.

- 1 * $1+0$: <exp>

10/16/08

Ambiguous Grammars and Languages

- A BNF grammar is ambiguous if its language contains strings for which there is more than one parse tree
- If all BNF's for a language are ambiguous then the language is inherently ambiguous

Example: Ambiguous Grammar
$-0+1+0$

Example

- What is the result for:

$$
3+4 * 5+6
$$

- Possible answers:
- $41=((3+4) * 5)+6$
- $47=3+(4$ * $(5+6))$
- $29=(3+(4 * 5))+6=3+((4 * 5)+6)$
- $77=(3+4) *(5+6)$

Example

- What is the value of:

$$
7-5-2
$$

- Possible answers:
- In Pascal, C++, SML assoc. left
$7-5-2=(7-5)-2=0$
- In APL, associate to right
$7-5-2=7-(5-2)=4$

Example

- What is the result for:

$$
3+4 * 5+6
$$

Example

- What is the value of:

$$
7-5-2
$$

Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator assoicativity
- Not the only sources of ambiguity

How to Enforce Associativity

- Have at most one recursive call per production
- When two or more recursive calls would be natural leave right-most one for right assoicativity, left-most one for left assoiciativity

Operator Precedence

Operators of highest precedence evaluated first (bind more tightly).

- Precedence for infix binary operators given in following table
- Needs to be reflected in grammar

First Example Again

- In any above language, $3+4$ * $5+6$ = 29
- In APL, all infix operators have same precedence
- Thus we still don't know what the value is (handled by associativity)
- How do we handle precedence in grammar?

Example

- <Sum> ::=0 | 1 | <Sum> + <Sum> | (<Sum>)
- Becomes
- <Sum> ::= <Num> | <Num> + <Sum>
- <Num> ::=0|1|(<Sum>)

Precedence Table - Sample

	Fortan	Pascal	C/C++	Ada	SML
highest	$* *$	$*, /$, div, mod	,++--	$* *$	div, mod, $/, *$
	$*, /$,+-	$*, /$, $\%$	$*, /$, mod	,,+- \wedge
	,+-		,+-	,+-	$::$

10/16/08

Predence in Grammar

- Higher precedence translates to longer derivation chain
- Example:
<exp> ::= <id> | <exp> + <exp> | <exp>* <exp>
- Becomes
<exp> ::= <mult_exp>
| <exp> + <mult_exp>
<mult_exp> ::= <id> | <mult_exp> * <id>

