Sample Grammar

<expr> ::= <term> | <term> + <expr>
| <term> - <expr>

<term> ::= <factor> | <factor> * <term>
| <factor> / <term>

<factor> ::= <id> | (<expr>)

Tokens as OCaml Types

+ - * / () <id>

Becomes an OCaml datatype

type token =
 Id_token of string
 | Left_parenthesis | Right_parenthesis
 | Times_token | Divide_token
 | Plus_token | Minus_token

Parse Trees as Datatypes

<expr> ::= <term> | <term> + <expr>
| <term> - <expr>

type expr =
 Term_as_Expr of term
 | Plus_Expr of (term * expr)
 | Minus_Expr of (term * expr)

<term> ::= <factor> | <factor> * <term>
| <factor> / <term>

and term =
 Factor_as_Term of factor
 | Mult_Term of (factor * term)
 | Div_Term of (factor * term)

<factor> ::= <id> | (<expr>)

and factor =
 Id_as_Factor of string
 | Parenthesized_Expr_as_Factor of expr
Will create three mutually recursive functions:
- `expr : token list -> (expr * token list)`
- `term : token list -> (term * token list)`
- `factor : token list -> (factor * token list)`

Each parses what it can and gives back parse and remaining tokens.

Parsing an Expression

```ocaml
<expr> ::= <term> [( + | - ) <expr> ]
let rec expr tokens =
  (match term tokens
   with ( term_parse , tokens_after_term ) ->
    (match tokens_after_term
      with ( Plus_token  :: tokens_after_plus ) -> ...
```
Parsing a Plus Expression

\[
<\text{expr}> ::= <\text{term}> + <\text{expr}>
\]

(match \(\text{expr} \\text{tokens}_{\text{after} +}\)
with (\(\text{expr}_\text{parse}\), \(\text{tokens}_{\text{after} \text{expr}}\)) ->
(Plus_Expr (\(\text{term}_\text{parse}\), \(\text{expr}_\text{parse}\)),
\(\text{tokens}_{\text{after} \text{expr}}\))

Building Plus Expression Parse Tree

\[
<\text{expr}> ::= <\text{term}> + <\text{expr}>
\]

(match \(\text{expr} \\text{tokens}_{\text{after} +}\)
with (\(\text{expr}_\text{parse}\), \(\text{tokens}_{\text{after} \text{expr}}\)) ->
(Plus_Expr (\(\text{term}_\text{parse}\), \(\text{expr}_\text{parse}\)),
\(\text{tokens}_{\text{after} \text{expr}}\))

Parsing a Minus Expression

\[
<\text{expr}> ::= <\text{term}> - <\text{expr}>
\]

| (Minus_token :: \(\text{tokens}_{\text{after} -}\)) ->
(match \(\text{expr} \\text{tokens}_{\text{after} -}\) ->
(Plus_Expr (\(\text{term}_\text{parse}\), \(\text{expr}_\text{parse}\)),
\(\text{tokens}_{\text{after} \text{expr}}\))

Parsing an Expression as a Term

\[
<\text{expr}> ::= <\text{term}>
\]

| _ -> (Term_as_Expr \(\text{term}_\text{parse}\),
\(\text{tokens}_{\text{after} \text{term}}\))

- Code for \(\text{term}\) is same except for replacing addition with multiplication and subtraction with division
Parsing Factor as Id

<factor> ::= <id>

and factor tokens =
 (match tokens
 with (Id_token id_name :: tokens_after_id) =
 (Id_as_Factor id_name, tokens_after_id))

Error Cases

What if no matching right parenthesis?
| _ -> raise (Failure "No matching rparen")

What if no leading id or left parenthesis?
| _ -> raise (Failure "No id or lparen")

(a + b) * c - d

expr [Left_parenthesis; Id_token "a"; Plus_token; Id_token "b";
Right_parenthesis; Times_token; Id_token "c"; Minus_token;
Id_token "d"];

(a + b) * c - d

- : expr * token list =
 (Minus_Expr
 (Mult_Term
 (Parenthesized_Expr_as_Factor
 (Plus_Expr
 (Factor_as_Term (Id_as_Factor "a"),
 Term_as_Expr (Factor_as_Term (Id_as_Factor "b")))),
 Factor_as_Term (Id_as_Factor "c")),
 Term_as_Expr (Factor_as_Term (Id_as_Factor "d"))));
 [])
(a + b) * c - d

```
expr
  term
    - expr
    factor
      * term
      factor
        ( expr )
        factor
          term
            + expr
            id
            factor
              id
              id
        a
        b
        c
        d
```

a + b * c - d

```
expr
  term
    + expr
    factor
      * term
      factor
        id
        id
        id
        id
        factor
          factor
            id
            id
            id
            id
        a
        b
        c
        d
```

(a + b * c - d)

```
expr
  term
    + expr
    factor
      * term
      term
        id
        factor
          term
            min
            id
            factor
              id
              id
              factor
                right_parenthesis
                times_token
                id
                minus_token
                id
                id
        a
        b
```

Parsing Whole String

```
Q: How to guarantee whole string parses?
A: Check returned tokens empty

let parse tokens =
  match expr tokens
  with (expr_parse, []) -> expr_parse
  | _ -> raise (Failure "No parse"");

Fixes <expr> as start symbol
```
More realistically, we don't want to create the entire list of tokens before we can start parsing. We want to generate one token at a time and use it to make one step in parsing. Will use \((\text{token } \ast (\text{unit } \rightarrow \text{token}))\) or \((\text{token } \ast (\text{unit } \rightarrow \text{token option}))\) in place of \(\text{token list}\).

Problems for Recursive-Descent Parsing

- **Left Recursion:**
 \[A ::= Aw \]
 translates to a subroutine that loops forever

- **Indirect Left Recursion:**
 \[A ::= Bw \]
 \[B ::= Av \]
 causes the same problem

Parser must always be able to choose the next action based only on the very next token.

Pairwise Disjointedness Test:

- For each rule \(A ::= y\)
- Calculate
- \[\text{FIRST}(y) = \{a \mid y \Rightarrow^* aw\} \cup \{\varepsilon \mid \text{if } y \Rightarrow^* \varepsilon\} \]
- For each pair of rules \(A ::= y\) and \(A ::= z\), require \(\text{FIRST}(y) \cap \text{FIRST}(z) = \{\}\)

Example

Grammar:
\[
\text{<S>} ::= \text{<A>} \ a \ \ b \\
\text{<A>} ::= \text{<A>} \ b \ | \ b \\
\text{} ::= a \ \ | \ a
\]

FIRST (\<A> b) = \{b\}
FIRST (b) = \{b\}
Rules for \<A> not pairwise disjoint

Eliminating Left Recursion

- Rewrite grammar to shift left recursion to right recursion.
- Changes associativity
- Given
 \[
 \text{<expr>} ::= \text{<expr>} + \text{<term>} \text{ and} \\
 \text{<expr>} ::= \text{<term>}
 \]
- Add new non-terminal \text{<e>} and replace above rules with
 \[
 \text{<expr>} ::= \text{<term><e>} \\
 \text{<e>} ::= + \text{<term><e>} \mid \varepsilon
 \]
Factoring Grammar

- Test too strong: Can’t handle
 \[\text{expr} ::= \text{term} [(+ | -) \text{expr}] \]
- Answer: Add new non-terminal and replace above rules by
 \[\text{expr} ::= \text{term}\text{e} \]
 \[\text{e} ::= + \text{term}\text{e} \]
 \[\text{e} ::= - \text{term}\text{e} \]
 \[\text{e} ::= \epsilon \]
- You are delaying the decision point

Example

Both \(<A>\) and \(\) have problems:
Transform grammar to:

\[\text{S} ::= \text{A} a \text{B} b \]
\[\text{A} ::= \text{A} b | b \]
\[\text{B} ::= a \text{B} | a \]

Transform:

\[\text{S} ::= \text{A} a \text{B} b \]
\[\text{A} ::= b\text{A1} \]
\[\text{A1} ::= b\text{A1} | \epsilon \]
\[\text{B} ::= a\text{B1} \]
\[\text{B1} ::= a\text{B1} | \epsilon \]

Programming Languages & Compilers

Three Main Topics of the Course

I
- New Programming Paradigm
II
- Language Translation
III
- Language Semantics

Programming Languages & Compilers

Order of Evaluation

I
- New Programming Paradigm
II
- Language Translation
III
- Language Semantics

Programming Languages & Compilers

III: Language Semantics

- Operational Semantics
- Lambda Calculus
- Axiomatic Semantics

Programming Languages & Compilers

Order of Evaluation

- Operational Semantics
- Lambda Calculus
- Axiomatic Semantics

Speciation to Implementation

- CS422
- CS426
- CS477

Speciation to Implementation
Semantics
- Expresses the meaning of syntax
- Static semantics
 - Meaning based only on the form of the expression without executing it
 - Usually restricted to type checking / type inference

Dynamic semantics
- Method of describing meaning of executing a program
- Several different types:
 - Operational Semantics
 - Axiomatic Semantics
 - Denotational Semantics

Dynamic Semantics
- Different languages better suited to different types of semantics
- Different types of semantics serve different purposes

Operational Semantics
- Start with a simple notion of machine
- Describe how to execute (implement) programs of language on virtual machine, by describing how to execute each program statement (i.e., following the structure of the program)
- Meaning of program is how its execution changes the state of the machine
- Useful as basis for implementations

Axiomatic Semantics
- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages

Axiomatic Semantics
- Used to formally prove a property (post-condition) of the state (the values of the program variables) after the execution of program, assuming another property (pre-condition) of the state before execution
- Written: \{Precondition\} Program \{Postcondition\}
- Source of idea of loop invariant
Denotational Semantics

- Construct a function \mathcal{M} assigning a mathematical meaning to each program construct.
- Lambda calculus often used as the range of the meaning function.
- Meaning function is compositional: meaning of construct built from meaning of parts.
- Useful for proving properties of programs.

Natural Semantics

- Aka “Big Step Semantics”.
- Provide value for a program by rules and derivations, similar to type derivations.
- Rule conclusions look like:
 $$(C, m) \Downarrow m'$$
 or
 $$(E, m) \Downarrow v$$

Simple Imperative Programming Language

- $I \in \text{Identifiers}$
- $N \in \text{Numerals}$
- $B ::= \text{true} | \text{false} | B \& B | B \text{ or } B | \text{not } B$
 | $E < E | E = E$
- $E ::= N | I | E + E | E \ast E | E - E | - E$
- $C ::= \text{skip} | C;C | I ::= E$
 | if B then C else C fi | while B do C od

Natural Semantics of Atomic Expressions

- Identifiers: $(I, m) \Downarrow m(I)$
- Numerals are values: $(N, m) \Downarrow N$
- Booleans: $(\text{true}, m) \Downarrow \text{true}$
 $(\text{false}, m) \Downarrow \text{false}$

Booleans:

<table>
<thead>
<tr>
<th>B, m \Downarrow \text{false}</th>
<th>B, m \Downarrow \text{true}</th>
<th>(B', m) \Downarrow b</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(B & B', m)$ \Downarrow \text{false}</td>
<td>$(B & B', m)$ \Downarrow b</td>
<td></td>
</tr>
<tr>
<td>$(B \text{ or } B', m)$ \Downarrow \text{true}</td>
<td>$(B \text{ or } B', m)$ \Downarrow b</td>
<td></td>
</tr>
<tr>
<td>$(\text{not } B, m)$ \Downarrow \text{false}</td>
<td>$(\text{not } B, m)$ \Downarrow \text{true}</td>
<td></td>
</tr>
</tbody>
</table>

Relations

<table>
<thead>
<tr>
<th>$(E, m) \Downarrow U$</th>
<th>$(E', m) \Downarrow V$</th>
<th>$U \sim V = b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(E \sim E', m) \Downarrow b$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- By $U \sim V = b$, we mean does (the meaning of) the relation \sim hold on the meaning of U and V.
- May be specified by a mathematical expression/equation or rules matching U and V.

Arithmetic Expressions

\[(E, m) \Downarrow U \quad (E', m) \Downarrow V \quad U \text{ op } V = N\]

where \(N\) is the specified value for \(U \text{ op } V\)

Commands

Skip:
\[(\text{skip}, m) \Downarrow m\]

Assignment:
\[(E, m) \Downarrow V \quad (I := E, m) \Downarrow m[I \leftarrow V]\]

Sequencing:
\[(C, m) \Downarrow m' \quad (C', m') \Downarrow m'' \quad (C; C', m) \Downarrow m''\]

If Then Else Command

\[(B, m) \Downarrow \text{true} \quad (C, m) \Downarrow m'\]

\[(\text{if } B \text{ then } C \text{ else } C' \text{ fi, } m) \Downarrow m'\]

\[(B, m) \Downarrow \text{false} \quad (C', m) \Downarrow m'\]

\[(\text{if } B \text{ then } C \text{ else } C' \text{ fi, } m) \Downarrow m'\]

While Command

\[(B, m) \Downarrow \text{false} \quad (\text{while } B \text{ do } C \text{ od, } m) \Downarrow m\]

\[(B, m) \Downarrow \text{true} \quad (C, m) \Downarrow m' \quad (\text{while } B \text{ do } C \text{ od, } m') \Downarrow m'' \quad (C; C', m) \Downarrow m''\]

Example: If Then Else Rule

\[x \text{ > 5, } \{x \rightarrow 7\} \Downarrow ?\]

\[\text{if } x \text{ > 5 then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi, } \{x \rightarrow 7\} \Downarrow ?\]
Example: Arith Relation

? > ? = ?
(x, (x -> 7)) \implies_? (5, (x -> 7)) \implies_?
(x > 5, (x -> 7)) \implies_? (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, {x -> 7}) \implies_? ?

Example: Identifier(s)

7 > 5 = true
(x, (x -> 7)) \implies_7 (5, (x -> 7)) \implies_5
(x > 5, (x -> 7)) \implies_? (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, {x -> 7}) \implies_? ?

Example: Arith Relation

7 > 5 = true
(x, (x -> 7)) \implies_7 (5, (x -> 7)) \implies_5
(x > 5, (x -> 7)) \implies_? (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, {x -> 7}) \implies_? ?

Example: If Then Else Rule

7 > 5 = true
(x, (x -> 7)) \implies_7 (5, (x -> 7)) \implies_5
(x > 5, (x -> 7)) \implies_? (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, {x -> 7}) \implies_? ?

Example: Assignment

7 > 5 = true
(x, (x -> 7)) \implies_7 (5, (x -> 7)) \implies_5
(x > 5, (x -> 7)) \implies_? (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, {x -> 7}) \implies_? ?

Example: Arith Op

? + ? = ?
(2, (x -> 7)) \implies_? (3, (x -> 7)) \implies_?
(2 + 3, (x -> 7)) \implies_? (if x > 5 then y := 2 + 3 else y := 3 + 4 fi, {x -> 7}) \implies_? ?
Example: Numerals

\[2 + 3 = 5\]
\[(2, \{x \mapsto 7\}) \downarrow 2\]
\[(3, \{x \mapsto 7\}) \downarrow 3\]
\[7 > 5 = \text{true}\]
\[(7, \{x \mapsto 7\}) \downarrow 5\]
\[7 > 5 = \text{true}\]
\[(2 + 3, \{x \mapsto 7\}) \downarrow 5\]
\[(y := 2 + 3, \{x \mapsto 7\}) \downarrow 5\]
\[(x > 5, \{x \mapsto 7\}) \downarrow \text{true}\]
\[(x > 5, \{x \mapsto 7\}) \downarrow \text{true}\]
\[(y := 2 + 3, \{x \mapsto 7\}) \downarrow 5\]
\[(x > 5, \{x \mapsto 7\}) \downarrow \text{true}\]
\[(y := 2 + 3, \{x \mapsto 7\}) \downarrow ?\]
Example

\[
\begin{align*}
(x, (x \mapsto 5)) & \Downarrow 5 & (3, (x \mapsto 5)) & \Downarrow 3 \\
(x + 3, (x \mapsto 5)) & \Downarrow 8 \\
(5, (x \mapsto 17)) & \Downarrow 5 & (x := x + 3, (x \mapsto 5)) & \Downarrow (x \mapsto 8) \\
(let \ x = 5 in (x := x + 3), (x \mapsto 17)) & \Downarrow \{x \mapsto 17\}
\end{align*}
\]

Comment

- Simple Imperative Programming Language introduces variables *implicitly* through assignment
- The let-in command introduces scoped variables *explicitly*
- Clash of constructs apparent in awkward semantics

Interpretation Versus Compilation

- A *compiler* from language L1 to language L2 is a program that takes an L1 program and for each piece of code in L1 generates a piece of code in L2 of same meaning
- An *interpreter* of L1 in L2 is an L2 program that executes the meaning of a given L1 program
- Compiler would examine the body of a loop once; an interpreter would examine it every time the loop was executed

Interpreter

- An *Interpreter* represents the operational semantics of a language L1 (source language) in the language of implementation L2 (target language)
- Built incrementally
 - Start with literals
 - Variables
 - Primitive operations
 - Evaluation of expressions
 - Evaluation of commands/declarations

Interpreter

- Takes abstract syntax trees as input
 - In simple cases could be just strings
- One procedure for each syntactic category (nonterminal)
 - eg one for expressions, another for commands
- If Natural semantics used, tells how to compute final value from code
- If Transition semantics used, tells how to compute next “state”
 - To get final value, put in a loop

Natural Semantics Example

- \(\text{compute_exp} \ (\text{Var}(v), m) = \text{look_up} \ v \ m\)
- \(\text{compute_exp} \ (\text{Int}(n), _) = \text{Num} \ (n)\)
- ...
- \(\text{compute_com}(\text{IfExp}(b, c_1, c_2), m) =\)
 - if \(\text{compute_exp} \ (b, m) = \text{Bool}(\text{true})\)
 - then \(\text{compute_com} \ (c_1, m)\)
 - else \(\text{compute_com} \ (c_2, m)\)
Natural Semantics Example
- compute_com(While(b,c), m) =
 if compute_exp (b,m) = Bool(false)
 then m
 else compute_com
 (While(b,c), compute_com(c,m))
- May fail to terminate - exceed stack limits
- Returns no useful information then

Expression Semantics
- Form of operational semantics
- Describes how each program construct transforms machine state by transitions
- Rules look like
 \((C, m) \rightarrow (C', m')\) or \((C, m) \rightarrow m'\)
 \(C, C'\) is code remaining to be executed
 \(m, m'\) represent the state/store/memory/environment
- Partial mapping from identifiers to values
- Sometimes \(m\) (or \(C\)) not needed
- Indicates exactly one step of computation

Expressions and Values
- \(C, C'\) used for commands; \(E, E'\) for expressions; \(U,V\) for values
- Special class of expressions designated as values
 - Eg 2, 3 are values, but 2+3 is only an expression
- Memory only holds values
- Other possibilities exist

Evaluation Semantics
- Transitions successfully stops when \(E/C\) is a value/memory
- Evaluation fails if no transition possible, but not at value/memory
- Value/memory is the final meaning of original expression/command (in the given state)
- Coarse semantics: final value / memory
- More fine grained: whole transition sequence

Simple Imperative Programming Language
- \(I \in \text{Identifiers}\)
- \(N \in \text{Numerals}\)
- \(B ::= \text{true} | \text{false} | B \& B | B \lor B | \text{not} B | E < E | E = E\)
- \(E ::= N | I | E + E | E * E | E - E | - E\)
- \(C ::= \text{skip} | C;C | I ::= E\)
 - if \(B\) then \(C\) else \(C\) fi | while \(B\) do \(C\) od

Transitions for Expressions
- Numerals are values
- Boolean values = \{true, false\}
- Identifiers: \((I,m) \rightarrow (m(I), m)\)
Boolean Operations:

- Operators: (short-circuit)
 - \((\text{false} \& B, m) --> (\text{false}, m)\)
 - \((B, m) --> (B'', m)\)
 - \((\text{true} \& B, m) --> (B, m)\)
 - \((B \& B', m) --> (B'' \& B', m)\)
 - \((\text{false} \lor B, m) --> (B, m)\)
 - \((B \lor B', m) --> (B'' \lor B', m)\)
 - \((\text{true} \lor B, m) --> (B, m)\)
 - \((B, m) --> (B'', m)\)
 - \((\text{not true}, m) --> (\text{false}, m)\)
 - \((B, m) --> (\text{not } B', m)\)
 - \((\text{not false}, m) --> (\text{true}, m)\)
 - \((\text{not } B, m) --> (\text{not } B', m)\)

Relations

- \((E, m) --> (E'', m)\)
- \((E \sim E', m) --> (E'' \sim E', m)\)
- \((E, m) --> (E', m)\)
- \((V \sim E, m) --> (V \sim E', m)\)
- \((U \sim V, m) --> (\text{true}, m) \text{ or } (\text{false}, m)\) depending on whether \(U \sim V\) holds or not

Arithmetic Expressions

- \((E, m) --> (E'', m)\)
- \((E \circ E', m) --> (E'' \circ E', m)\)
- \((E, m) --> (E', m)\)
- \((V \circ E, m) --> (V \circ E', m)\)
- \((U \circ V, m) --> (N, m)\) where \(N\) is the specified value for \(U \circ V\)

Commands - in English

- \((\text{skip}, m) --> m\)
- \((E, m) --> (E', m)\)
- \((I := E, m) --> (I := E', m)\)
- \((I := V, m) --> m[I <-- V]\)
- \((C, m) --> (C'', m')\)
- \((C; C', m) --> (C''; C', m')\)
- \((C; C', m) --> (C'; m')\)

If Then Else Command - in English

- If the boolean guard in an if_then_else is true, then evaluate the first branch
- If it is false, evaluate the second branch
- If the boolean guard is not a value, then start by evaluating it first.
If Then Else Command

(if true then \(C \) else \(C' \) fi, \(m \)) \(\rightarrow \) (\(C, m \))

(if false then \(C \) else \(C' \) fi, \(m \)) \(\rightarrow \) (\(C', m \))

\((B,m) \rightarrow (B',m) \)

(if \(B \) then \(C \) else \(C' \) fi, \(m \))
\(\rightarrow \) (if \(B' \) then \(C \) else \(C' \) fi, \(m \))

While Command

(while \(B \) do \(C \) od, \(m \)) \(\rightarrow \)

(if \(B \) then \(C; \) while \(B \) do \(C \) od skip fi, \(m \))

In English: Expand a While into a test of the boolean guard, with the true case being to do the body and then try the while loop again, and the false case being to stop.