Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
Example Regular Expressions

- $(0 \lor 1)^* 1$
 - The set of all strings of 0’s and 1’s ending in 1, \{1, 01, 11,\ldots\}

- $a^*b(a^*)$
 - The set of all strings of a’s and b’s with exactly one b

- $((01) \lor (10))^*$
 - You tell me

- Regular expressions (equivalently, regular grammars) important for lexing, breaking strings into recognized words
Regular Grammars

- Subclass of BNF (covered in detail sool)
- Only rules of form
 \[<\text{nonterminal}> ::= <\text{terminal}> <\text{nonterminal}> \text{ or } <\text{nonterminal}> ::= <\text{terminal}> \text{ or } <\text{nonterminal}> ::= \varepsilon \]
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata – nonterminals \(\cong\) states; rule \(\cong\) edge
Regular grammar:

\[
\begin{align*}
\text{<Balanced>} & ::= \varepsilon \\
\text{<Balanced>} & ::= 0\text{<OneAndMore>} \\
\text{<Balanced>} & ::= 1\text{<ZeroAndMore>} \\
\text{<OneAndMore>} & ::= 1\text{<Balanced>} \\
\text{<ZeroAndMore>} & ::= 0\text{<Balanced>}
\end{align*}
\]

Generates even length strings where every initial substring of even length has same number of 0’s as 1’s
Example: Lexing

- Regular expressions good for describing lexemes (words) in a programming language
 - Identifier = \((a \lor b \lor \ldots \lor z \lor A \lor B \lor \ldots \lor Z) (a \lor b \lor \ldots \lor z \lor A \lor B \lor \ldots \lor Z \lor 0 \lor 1 \lor \ldots \lor 9)^*\)
 - Digit = \((0 \lor 1 \lor \ldots \lor 9)\)
 - Number = \(0 \lor (1 \lor \ldots \lor 9)(0 \lor \ldots \lor 9)^* \lor \sim (1 \lor \ldots \lor 9)(0 \lor \ldots \lor 9)^*\)
 - Keywords: if = if, while = while,
Implementing Regular Expressions

- Regular expressions reasonable way to generate strings in language
- Not so good for recognizing when a string is in language
- Problems with Regular Expressions
 - which option to choose,
 - how many repetitions to make
- Answer: finite state automata
- Should have seen in CS374
Lexing

- Different syntactic categories of “words”: tokens

Example:
- Convert sequence of characters into sequence of strings, integers, and floating point numbers.
 - "asd 123 jkl 3.14" will become: [String "asd"; Int 123; String "jkl"; Float 3.14]
Lex, ocamllex

• Could write the reg exp, then translate to DFA by hand
 • A lot of work

• Better: Write program to take reg exp as input and automatically generates automata

• Lex is such a program

• ocamllex version for ocaml
How to do it

To use regular expressions to parse our input we need:

- Some way to identify the input string — call it a lexing buffer
- Set of regular expressions,
- Corresponding set of actions to take when they are matched.
How to do it

- The lexer will take the regular expressions and generate a state machine.
- The state machine will take our lexing buffer and apply the transitions...
- If we reach an accepting state from which we can go no further, the machine will perform the appropriate action.
Mechanics

- Put table of reg exp and corresponding actions (written in ocaml) into a file `<filename>.mll`
- Call `ocamllex `<filename>.mll`
- Produces Ocaml code for a lexical analyzer in file `<filename>.ml`
Sample Input

rule main = parse
['0'-'9']+ { print_string "Int\n"}
| ['0'-'9']+'.['0'-'9']+ { print_string "Float\n"}
| ['a'-'z']+ { print_string "String\n"}
| _ { main lexbuf }
{
 let newlexbuf = (Lexing.from_channel stdin) in
 print_string "Ready to lex.\n";
 main newlexbuf
}
let \texttt{ident} = \texttt{regexp} ...

\textbf{rule} \texttt{entrypoint [arg1... argn]} = \texttt{parse}
 \hfill \texttt{regexp \{ action \}}
 \hfill | ... \\
 \hfill | \texttt{regexp \{ action \}}

\textbf{and} \texttt{entrypoint [arg1... argn]} = \texttt{parse} ...\texttt{and} ...

\texttt{\{ trailer \}}
Ocamllex Input

- *header* and *trailer* contain arbitrary ocaml code put at top and bottom of `<filename>.ml`

- `let ident = regexp ...` Introduces `ident` for use in later regular expressions
Ocamllex Input

- `<filename>.ml` contains one lexing function per *entrypoint*
 - Name of function is name given for *entrypoint*
 - Each entry point becomes an Ocaml function that takes $n+1$ arguments, the extra implicit last argument being of type `Lexing.lexbuf`

- `arg1... argn` are for use in *action*
Ocamllex Regular Expression

- Single quoted characters for letters: ‘a’
- _ (underscore) matches any letter
- Eof: special “end_of_file” marker
- Concatenation same as usual
- “string”: concatenation of sequence of characters
- e_1 / e_2: choice - what was $e_1 \lor e_2$
- \([c_1 - c_2]\): choice of any character between first and second inclusive, as determined by character codes
- \([^c_1 - c_2]\): choice of any character NOT in set
- \(e^*\): same as before
- \(e^+\): same as \(e e^*\)
- \(e?\): option - was \(e_1 \vee \epsilon\)
- $e_1 \# e_2$: the characters in e_1 but not in e_2; e_1 and e_2 must describe just sets of characters
- **ident**: abbreviation for earlier reg exp in `let ident = regexp`
- e_1 as **id**: binds the result of e_1 to **id** to be used in the associated **action**
More details can be found at

http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html
Example: test.mll

```ml
{ type result = Int of int | Float of float | String of string }
let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter +
```
Example : test.mll

rule main = parse
 (digits).'digits as f { Float (float_of_string f) }
| digits as n { Int (int_of_string n) }
| letters as s { String s}
| _ { main lexbuf }
{ let newlexbuf = (Lexing.from_channel stdin) in
 print_string "Ready to lex."
 print_newline ();
 main newlexbuf }
Example

```ocaml
# use "test.ml";;
...
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->
  result = <fun>

Ready to lex.

hi there 234 5.2
- : result = String "hi"

What happened to the rest?!?
```
Example

```ocaml
# let b = Lexing.from_channel stdin;
# main b;;
hi 673 there
- : result = String "hi"
# main b;;
- : result = Int 673
# main b;;
- : result = String "there"
```
Your Turn

- Work on ML4
 - Add a few keywords
 - Implement booleans and unit
 - Implement Ints and Floats
 - Implement identifiers
Problem

- How to get lexer to look at more than the first token at one time?
- One Answer: *action* tells it to -- recursive calls
- Side Benefit: can add “state” into lexing
- Note: already used this with the _ case
- Mainly useful when you can make your lexer be your parser
 - OCaml yacc parser needs tokens one at a time
Example

rule main = parse
 (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf}
| digits as n { Int (int_of_string n) :: main lexbuf }
| letters as s { String s :: main lexbuf }
| eof { [] }
| _ { main lexbuf }
Example Results

Ready to lex.

hi there 234 5.2
- : result list = [String "hi"; String "there"; Int 234; Float 5.2]

Used Ctrl-d to send the end-of-file signal
Dealing with comments

First Attempt

let open_comment = "(*"
let close_comment = "*)"

rule main = parse
 (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf}
 | digits as n { Int (int_of_string n) :: main lexbuf }
 | letters as s { String s :: main lexbuf}
Dealing with comments

| open_comment { comment lexbuf }
| eof { [] }
| _ { main lexbuf }

and comment = parse

 close_comment { main lexbuf }
| _ { comment lexbuf }
Dealing with nested comments

rule main = parse ... |
open_comment { comment 1 lexbuf } |
eof { [] } |
_ { main lexbuf }
and comment depth = parse |
open_comment { comment (depth+1) lexbuf }
| close_comment { if depth = 1 then main lexbuf else comment (depth - 1) lexbuf } |
_ { comment depth lexbuf }
Dealing with nested comments

rule main = parse
 (digits) '. ' digits as f { Float (float_of_string f) ::
 main lexbuf}
| digits as n { Int (int_of_string n) :: main
 lexbuf }
| letters as s { String s :: main lexbuf}
| open_comment { (comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }
Dealing with nested comments

and comment depth = parse

| open_comment { comment (depth+1) lexbuf } |
| close_comment { if depth = 1 then main lexbuf else comment (depth - 1) lexbuf } |
| _ { comment depth lexbuf } |
Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata

Whole family more of grammars and automata – covered in automata theory
Sample Grammar

- Language: Parenthesized sums of 0’s and 1’s

- \(<Sum> ::= 0\)
- \(<Sum> ::= 1\)
- \(<Sum> ::= <Sum> + <Sum>\)
- \(<Sum> ::= (<Sum>)\)
BNF Grammars

- Start with a set of characters, $a,b,c,...$
 - We call these *terminals*

- Add a set of different characters, $X,Y,Z,...$
 - We call these *nonterminals*

- One special nonterminal S called *start symbol*
BNF Grammars

- BNF rules (aka productions) have form
 \[X ::= y \]
 where \(X \) is any nonterminal and \(y \) is a string of terminals and nonterminals

- BNF grammar is a set of BNF rules such that every nonterminal appears on the left of some rule
Sample Grammar

- Terminals: 0 1 + ()
- Nonterminals: <Sum>
- Start symbol = <Sum>

- <Sum> ::= 0
- <Sum> ::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)

Can be abbreviated as

<Sum> ::= 0 | 1
 | <Sum> + <Sum> | (<Sum>)
BNF Derivations

- Given rules
 \[X ::= yZw \] and \[Z ::= v \]
 we may replace \(Z \) by \(v \) to say
 \[X \Rightarrow yZw \Rightarrow yvw \]

- Sequence of such replacements called **derivation**

- Derivation called **right-most** if always replace the right-most non-terminal
BNF Derivations

- Start with the start symbol:

<Sum> =>
BNF Derivations

- Pick a non-terminal

\[<\text{Sum}> \Rightarrow \]
BNF Derivations

- Pick a rule and substitute:
 - \(<\text{Sum}\> ::= \langle \text{Sum} \rangle + \langle \text{Sum} \rangle\)

\[\text{BNF Derivations} \]

\(\langle \text{Sum} \rangle \Rightarrow \langle \text{Sum} \rangle + \langle \text{Sum} \rangle \)
BNF Derivations

Pick a non-terminal:

<Sum> => <Sum> + <Sum>
Pick a rule and substitute:

- $<\text{Sum}> ::= (<\text{Sum}>)$

$<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}>$

$\Rightarrow (<\text{Sum}>) + <\text{Sum}>$
BNF Derivations

- Pick a non-terminal:

\[<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}> \]

\[\Rightarrow (<\text{Sum}>) + <\text{Sum}> \]
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= <Sum> + <Sum>`

`<Sum> => <Sum> + <Sum>`

=> `(<Sum>) + <Sum>`

=> `(<Sum> + <Sum>) + <Sum>`
BNF Derivations

Pick a non-terminal:

\[<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}> \]
\[\Rightarrow (<\text{Sum}>) + <\text{Sum}> \]
\[\Rightarrow (<\text{Sum}> + <\text{Sum}>) + <\text{Sum}> \]
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= 1`

 \[<Sum> \Rightarrow <Sum> + <Sum>\]

 \[\Rightarrow (<Sum> + <Sum>) + <Sum>\]

 \[\Rightarrow (<Sum> + 1) + <Sum>\]
BNF Derivations

Pick a non-terminal:

<Sum> => <Sum> + <Sum>
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
BNF Derivations

Pick a rule and substitute:

- `<Sum> ::= 0`

```
<Sum>  =>  <Sum> + <Sum>
=> (  <Sum>   ) + <Sum>
=> (  <Sum> + <Sum> ) + <Sum>
=> (  <Sum> + 1  ) + <Sum>
=> (  <Sum> + 1 ) + 0
```
BNF Derivations

- Pick a non-terminal:

\[
<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}>
\]
\[
\Rightarrow (<\text{Sum} > + <\text{Sum} >) + <\text{Sum}>
\]
\[
\Rightarrow (<\text{Sum} > + 1) + <\text{Sum}>
\]
\[
\Rightarrow (<\text{Sum} > + 1) + 0
\]
BNF Derivations

- Pick a rule and substitute

<Sum> ::= 0

<Sum> => <Sum> + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=> (0 + 1) + 0
BNF Derivations

(0 + 1) + 0 is generated by grammar

<Sum> => <Sum> + <Sum>
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=> (0 + 1) + 0
<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> =>
BNF Semantics

The meaning of a BNF grammar is the set of all strings consisting only of terminals that can be derived from the Start symbol
Regular Grammars

- Subclass of BNF
- Only rules of form
 \[\text{<nonterminal>} ::= \text{<terminal>} \text{<nonterminal>} \text{ or } \]
 \[\text{<nonterminal>} ::= \text{<terminal>} \text{ or } \]
 \[\text{<nonterminal>} ::= \varepsilon \]
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata – nonterminals \(\cong\) states; rule \(\cong\) edge
Regular grammar:

- `<Balanced> ::= ε`
- `<Balanced> ::= 0<OneAndMore>`
- `<Balanced> ::= 1<ZeroAndMore>`
- `<OneAndMore> ::= 1<Balanced>`
- `<ZeroAndMore> ::= 0<Balanced>`

Generates even length strings where every initial substring of even length has same number of 0’s as 1’s
Extended BNF Grammars

- Alternatives: allow rules of from \(X ::= y / z \)
 - Abbreviates \(X ::= y, X ::= z \)
- Options: \(X ::= y[v] z \)
 - Abbreviates \(X ::= yvz, X ::= yz \)
- Repetition: \(X ::= y\{ v \}^* z \)
 - Can be eliminated by adding new nonterminal \(V \) and rules \(X ::= yz, X ::= yVz, V ::= v, V ::= vV \)
Parse Trees

- Graphical representation of derivation
- Each node labeled with either non-terminal or terminal
- If node is labeled with a terminal, then it is a leaf (no sub-trees)
- If node is labeled with a non-terminal, then it has one branch for each character in the right-hand side of rule used to substitute for it
Example

- Consider grammar:

 \[
 \begin{align*}
 \text{<exp> } &\ ::=\ <\text{factor}> \\
 &\quad |\ <\text{factor}> +\ <\text{factor}> \\
 \text{<factor> } &\ ::=\ <\text{bin}> \\
 &\quad |\ <\text{bin}> \times\ <\text{exp}> \\
 \text{<bin> } &\ ::=\ 0\ |\ 1
 \end{align*}
 \]

- Problem: Build parse tree for \(1 \times 1 + 0 \) as an \text{<exp>
Example cont.

- 1 * 1 + 0: <exp>

<exp> is the start symbol for this parse tree
Example cont.

- $1 \times 1 + 0$:

Use rule: $\text{exp} ::= \text{factor}$
Example cont.

- $1 \times 1 + 0$: $\langle \text{exp} \rangle$

$\langle \text{factor} \rangle$
\[\langle \text{bin} \rangle * \langle \text{exp} \rangle\]

Use rule: $\langle \text{factor} \rangle ::= \langle \text{bin} \rangle * \langle \text{exp} \rangle$
Example cont.

1 * 1 + 0: <exp>

<factor> * <exp>

<bin> <factor> + <factor>

1

Use rules:

<bin> ::= 1 and
<exp> ::= <factor> +

<factor>
1 * 1 + 0: \[\langle exp \rangle \]

\[\langle factor \rangle \]

\[\langle bin \rangle \text{ * } \langle exp \rangle \]

\[\langle bin \rangle \text{ + } \langle factor \rangle \]

Use rule: \[\langle factor \rangle ::= \langle bin \rangle \]
Example cont.

1 * 1 + 0: \[\text{<exp>} \]

\[\text{<factor>} \]

\[\text{<bin>} \quad * \quad \text{<exp>} \]

\[1 \quad \text{<factor>} \quad + \quad \text{<factor>} \]

\[\text{<bin>} \quad \text{<bin>} \]

\[1 \quad 0 \]

Use rules: \[\text{<bin>} ::= 1 \mid 0 \]
Example cont.

1 * 1 + 0:

```
<exp>
 | <factor>
 /  *
<bin>  <exp>
   /  <factor>
  /   +
 <bin>  <bin>
  1    0
```

Fringe of tree is string generated by grammar
Your Turn: $1 \times 0 + 0 \times 1$
Parse Tree Data Structures

- Parse trees may be represented by OCaml datatypes
- One datatype for each nonterminal
- One constructor for each rule
- Defined as mutually recursive collection of datatype declarations
Example

- Recall grammar:
 \[
 \text{<exp>} ::= \text{<factor>} | \text{<factor>} + \text{<factor>}

 \text{<factor>} ::= \text{<bin>} | \text{<bin>} * \text{<exp>}

 \text{<bin>} ::= 0 | 1
 \]

- type exp = Factor2Exp of factor

 and factor = Bin2Factor of bin

 and bin = Zero | One
Example cont.

\[1 \times 1 + 0: \]

```
  <exp>
   /\       /
  <factor> <exp>
  /     /   /
<bin> * <bin> + <bin>
  1     1   0
```
Example cont.

- Can be represented as

\[
\text{Factor2Exp} \\
(\text{Mult}(\text{One}, \text{Plus}(\text{Bin2Factor One}, \text{Bin2Factor Zero})))
\]
Ambiguous Grammars and Languages

- A BNF grammar is *ambiguous* if its language contains strings for which there is more than one parse tree.
- If all BNF’s for a language are ambiguous then the language is *inherently ambiguous*.
Example: Ambiguous Grammar

\[0 + 1 + 0 \]

\[
\begin{align*}
<\text{Sum}> & \quad + \quad <\text{Sum}> \\
\quad 0 & \quad + \quad 1 & \quad 0
\end{align*}
\]

\[
\begin{align*}
<\text{Sum}> & \quad + \quad <\text{Sum}> \\
\quad 0 & \quad + \quad 1 & \quad 0
\end{align*}
\]
Example

What is the result for:

\[3 + 4 \times 5 + 6 \]
Example

What is the result for:

\[3 + 4 \times 5 + 6 \]

Possible answers:

- \[41 = ((3 + 4) \times 5) + 6 \]
- \[47 = 3 + (4 \times (5 + 6)) \]
- \[29 = (3 + (4 \times 5)) + 6 = 3 + ((4 \times 5) + 6) \]
- \[77 = (3 + 4) \times (5 + 6) \]
Example

What is the value of:

7 – 5 – 2
Example

What is the value of:

\[7 - 5 - 2 \]

Possible answers:

- In Pascal, C++, SML assoc. left
 \[7 - 5 - 2 = (7 - 5) - 2 = 0 \]
- In APL, associate to right
 \[7 - 5 - 2 = 7 - (5 - 2) = 4 \]
Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator associativity

Not the only sources of ambiguity