
1

Mesage-Passing Parallel Programming
with MPI

2

What is MPI?

MPI (Message-Passing Interface) is a message-passing library
specification that can be used to write parallel programs for
parallel computers, clusters, and heterogeneous networks.

Portability across platforms is a crucial advantage of MPI. Not
only can MPI programs run on any distributed-memory
machine and multicomputer, but they can also run efficiently on
shared-memory machines. OpenMP programs can only run
efficiently on machines with hardware support for shared
memory.

Like OpenMP, MPI was designed with the participation of
several computer vendors (IBM, Intel, Cray, Convex, Meiko,
Ncube) and software houses (KAI, ParaSoft). Furthermore,
several Universities participated in the design of MPI.

3

e exchange of

.

r’s memory is

w.mcs.anl.gov/mpi).

ss 1

ata)
Cooperative operations
Message-passing is an approach that makes th
data cooperative.

Data mush both be explicitly sent and received

An advantage is that any change in the receive
made with the receiver’s participation.

(From W. Gropp’s transparencies: Tutorial on MPI. http://ww

Process 0 Proce

send(data)

recv(d

4

ses include

hout waiting for

w.mcs.anl.gov/mpi).

ss 1

ata)

ss 1

ory)
One-sided operations

One-sided operations between parallel proces
remote memory reads and writes.

An advantage is that data can be accesses wit
another process.

(From W. Gropp’s transparencies: Tutorial on MPI. http://ww

Process 0 Proce

(Memory)

get(d

Process 0 Proce

put(data)

(Mem

5

s that are easy
cessor using
n.
Comparison

One-sided operations tend to produce program
to read. With one sided operations only the pro
the data has to participate in the communicatio

6

 the statement
 a and c are in

with a global
ecause the
ed to
• Example: The following code would execute
a=f(b,c) in processor 1 of a multicomputer if
the memory of processor 2.

 in processor 1: receive (2,x)
y = f(b,x)
send (2,y)

 in processor 2: send (1,c)
 receive(1,a)

In a shared-memory machine or a machine
address space, the code would be simpler b
program running on processor 2 does not ne
participate in the computation:

 in processor 1:
 x := get(2,c)
 y = f(b,x)
 put(2,a) := y

7

• Example: To execute the loop
 do i=1,n

 a(i) = x(k(i))
 end do

in parallel on a message passing machine could require
complex interactions between processors.

• Pointer chasing across the whole machine is another case
where the difficulties of message-passing become apparent.

8

Message Passing

Can be considered as a programming model

Typically SPMD (Single Program Multiple Data) and not MPMD

Program is sequential code in Fortran , C or C++

All variable are local. No shared variables.

9

Alternatives

High-Performancre Fortran

Co-Array Fortran

Unified Parallel C (UPC)

10

Messages

Message operations are verbose in MPI because of its library
implementation (as opposed to language implementation)

Must specify:

• Which process is sending the message

• Where is the data in the sending process

• What kind of data is being sent

• How much data is being sent

• Which process is going to receive the message

• Where shoudl the data be left in the receiving process

• What amount of data is the receiving process prepared to
accept.

11

12

13

e send and

esses that can
s such as

ceiving. Within
at ranges from
re is a default
esses that is

ology
icator into some
ian
Features of MPI

MPI has a number of useful features beyond th
receive capabilities.

• Communicators. A subset of the active proc
be treated as a group for collective operation
broadcast, reduction, barriers, sending or re
each communicator, a process has a rank th
zero to the size of the group minus one. The
communicator that refers to all the MPI proc
called MPI_COMM_WORLD.

• Topologies. A communicator can have a top
associated with it. This arranges a commun
layout. The most common layout is a cartes
decomposition.

le styles of
blocking. Users
nding or allow
 capabilities
putation.

e calls in MPI
ll. For example,
ll the processes

ting. O’Reilly 1998).
• Communication modes. MPI supports multip
communication, including blocking and non-
can also choose to use explicit buffers for se
MPI to manage the buffers. The nonblocking
allow the overlap of communication and com

• Single-call collective operations. Some of th
automate collective operations in a single ca
there is a single call to sum values across a
to a single value.

(From K. Dowd and C. Severance. High Performance Compu

16

ORLD,rank)

ORLD,size)

k," of ", size

w.mcs.anl.gov/mpi).
Writing MPI Programs

 include ’mpif.h’

 integer rank, size

 call MPI_INIT(ierr)

 call MPI_COMM_RANK(MPI_COMM_W

 call MPI_COMM_SIZE(MPI_COMM_W

 print *,"hello world I’m ", ran

 call MPI_FINALIZE(ierr)

 end

(From W. Gropp’s transparencies: Tutorial on MPI. http://ww

17

Typical output on a SMP
 hello world I’m 1 of 20
 hello world I’m 2 of 20
 hello world I’m 3 of 20
 hello world I’m 4 of 20
 hello world I’m 5 of 20
 hello world I’m 6 of 20
 hello world I’m 7 of 20
 hello world I’m 9 of 20
 hello world I’m 11 of 20
 hello world I’m 12 of 20
 hello world I’m 10 of 20
 hello world I’m 8 of 20
 hello world I’m 14 of 20
 hello world I’m 13 of 20
 hello world I’m 15 of 20
 hello world I’m 16 of 20
 hello world I’m 19 of 20
 hello world I’m 0 of 20
 hello world I’m 18 of 20
 hello world I’m 17 of 20
4.03u 0.43s 0:01.88e 237.2%

18

Commentary

• include ’mpif.h’ provides basic MPI definitions and types

• call MPI_INIT starts MPI

• call MPI_FINALIZE exits MPI

• call MPI_COMM_RANK(MPI_COMM_WORLD,rank) returns the
rank of the process making the subroutine call. Notice that
this rank in within the default communicator.

• call MPI_COMM_SIZE(MPI_COMM_WORLD,size) returns the
total number of processes involved the execution of the MPI
program.

(From W. Gropp’s transparencies: Tutorial on MPI. http://www.mcs.anl.gov/mpi).

19

MPI

g, comm)

occurrences of
.

up associated

ssage.

MIT Press 1996).
Send and Receive Operations in
The basic (blocking) send operation in MPI is

MPI_SEND(buf, count, datatype, dest, ta

where

• (buf, count, datatype) describes count
items of the form datatype starting at buf

• dest is the rank of the destination in the gro
with the communicator comm.

• tag is an integer to restrict receipt of the me

(From W. Gropp E. Lusk, and A. Skejellum. Using MPI.

The receive operation has the form
MPI_RECV(buf, count, datatype, source, tag, comm, status)

where

• count is the size of the receive buffer

• source is the id of source process, or MPI_ANY_SOURCE

• tag is a message tag, or MPI_ANY_TAG

• status contains the source, tag, and count of the message
actually received.

Broadcast and Reduction

The routine MPI_BCAST sends data from one process to all
others.

The routine MPI_REDUCE combines data from all processes
(by adding them in the example shown next), and returnting
the result to a single program.

Second MPI Example: PI
 program main
 include ’mpif.h’
 double precision PI25DT
 parameter (PI25DT = 3.141592653589793238462643d0)

 double precision mypi, pi, h, sum, x, f, a
 integer n, myid, numprocs, i, rc
c function to integrate
 f(a) = 4.d0 / (1.d0 + a*a)

 call MPI_INIT(ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
 print *, "Process ", myid, " of ", numprocs, " is alive"

 sizetype = 1
 sumtype = 2

 10 if (myid .eq. 0) then
 write(6,98)
 98 format(’Enter the number of intervals: (0 quits)’)
 read(5,99) n
 99 format(i10)
 endif

 call MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)
c check for quit signal
 if (n .le. 0) goto 30
c calculate the interval size
 h = 1.0d0/n

 sum = 0.0d0
 do 20 i = myid+1, n, numprocs
 x = h * (dble(i) - 0.5d0)
 sum = sum + f(x)
 20 continue
 mypi = h * sum

c collect all the partial sums
 call MPI_REDUCE(mypi,pi,1,MPI_DOUBLE_PRECISION,MPI_SUM,0,
 $ MPI_COMM_WORLD,ierr)

c node 0 prints the answer.
 if (myid .eq. 0) then
 write(6, 97) pi, abs(pi - PI25DT)
 97 format(’ pi is approximately: ’, F18.16,
 + ’ Error is: ’, F18.16)
 endif
 goto 10
 30 call MPI_FINALIZE(rc)
 stop
 end

(From W. Gropp’s transparencies: Tutorial on MPI. http://www.mcs.anl.gov/mpi).

	Mesage-Passing Parallel Programming with MPI
	What is MPI?
	Features of MPI
	Writing MPI Programs

