Mesage-Passing Parallel Programming
with MPI

What is MPI?

MPI| (Message-Passing Interface) is a message-passing lbrary
specification that can be used to write parallel programs for
parallel computers, clusters, and heterogeneous networks.

Portability across platforms is a crucial advantage of MPI. Not
only can MPI programs run on any distributed-memory
machine and multicomputer, but they can also run eficiently on
shared-memory machines. OpenMP programs can only run
efficiently on machines with hardware support for shared
memory.

Like OpenMP, MPI| was designed with the participation of
several computer vendors (IBM, Intel, Cray, Convex, Meiko,
Ncube) and software houses (KAI, ParaSoft). Furthermore,
several Universities participated in the design of MPI.

Cooperative operations

Message-passing is an approach that makes the exchange of
data cooperative.

Data mush both be explicitly sent and received.

An advantage is that any change in the receiver’'s memory is
made with the receiver’s participation.

Process 0O Process 1

send(dat a) —

T~ ecv(dat a)

(From W. Gropp’s transparencies: Tutorial on MPI. http://www.mcs.anl.gov/mpi).

One-sided operations

One-sided operations between parallel processes include
remote memory reads and writes.

An advantage is that data can be accesses without waiting for
another process.

Process 0O Process 1

put (dat a) — |
B (Menory)

Process 0O Process 1

(Menory) —

- get (dat a)

(From W. Gropp’s transparencies: Tutorial on MPI. http://www.mcs.anl.gov/mpi).

Comparison

One-sided operations tend to produce programs that are easy
to read. With one sided operations only the processor using
the data has to participate in the communication.

Example: The following code would execute the statement
a=f(b,c) in processor 1 of a multicomputer if a and c are in
the memory of processor 2.

in processor 1: receive (2, X)
y = f(b,x)
send (2,vY)

in processor 2: send (1, c)

receive(l, a)

In a shared-memory machine or a machine with a global
address space, the code would be simpler because the
program running on processor 2 does not need to
participate in the computation:

in processor 1:
X .= get(2,c)
y = f(b,x)
put(2,a) =y

¢ Example: To execute the loop
do i=1,n
a(i) = x(k(i))
end do

in parallel on a message passing machine could require
complex interactions between processors.

* Pointer chasing across the whole machine is another case
where the difficulties of message-passing become apparent.

Message Passing

Can be considered as a programming model

Typically SPMD (Single Program Multiple Data) and not MPMD
Program is sequential code in Fortran , C or C++

All variable are local. No shared variables.

Alternatives

High-Performancre Fortran

Co-Array Fortran

Unified Parallel C (UPC)

Messages

Message operations are verbose in MPI because of its library
iImplementation (as opposed to language implementation)

Must specify:

* Which process is sending the message

* Where is the data in the sending process

* What kind of data is being sent

* How much data is being sent

* Which process is going to receive the message

* Where shoudl the data be left in the receiving process

* What amount of data is the receiving process prepared to
accept.

10

<type> buf (=x)

1

? integer :: count, datatype, dest, tag, comm, ierror

i call MPI Send (buf, ! massage buffer

4 count , ' # of items

5 datatype, ! MPI data type

& dast, ! destination rank

7 tag, ! message tag (additional label)
S = CHITHT, ! communicator

9 ierror) ' return value

1 <type> buf (=)

* integer :: count, datatype, source, tag, comm,

1 integer :: status(MPI_STATUS_SIZE), ierror

4 call MPI Becvibuf, ! message buffer

5 count , ! maximum # of items

& datatype, ! MPI data type

T BouUrca, | source rank

& tag, ! message tag (additional label)
9 = T, | communicator

10 status, ! status object (MPI_Status+ in C)
1 ierror) !' return value

11

integer :: status(MPI_STATUS_SIZE), datatype,

call MPI_Get_ count (status,
datatype,
count,
ierror)

status object
MPI data type
count (output
return value

count, ierror
from MPI_Recv ()
received
argument)

12

integer, dimension(MPI_STATUS_SIZE) :: status
call MPI_Comm_size (MPI_COMM WORLD, size, ierror)
call MPFI_Comm_ rank (MPI_COMM WORLD, rank, ierror)

! integration limits
a=0.d0 ; b=2.d0 ; res=0.d0

! limits for “ma™
mya=a+rank+ (b-a) /size
myb=mya+ (b—-a) /size

! integrate f(x) over my own chunk - actual work
psum = integrate (mya, myb)

! rank 0 collects partial results
if (rank.eq.0) then

res=psum

do i=1,size-1

call MPI Recv(tmp, & receive buffer

1
1, & ! array length
! data type
MPI_DOUBLE_PRECISION, &
: [& ! rank of source
0, & ! tag (unused here)
MPI_COMM WORLD,& ! communicator
status, & ! status array (msg info)
ierror)
res=res+tmp
enddo
write(x,) "Result: ' ,res
! ranks != 0 send their results to rank 0
else
call MPI_Send (psum, P ! send buffer
1, P ! message length
MPI_DOUBLE_PRECISION, &
[& ! rank of destination
0, P ! tag (unused here)
MPI_COMM WORLD, ierror)
endif

13

Features of MPI

MPI has a number of useful features beyond the send and
receive capabilities.

* Communicators. A subset of the active processes that can
be treated as a group for collective operations such as
broadcast, reduction, barriers, sending or receiving. Within
each communicator, a process has a rank that ranges from
zero to the size of the group minus one. There is a default
communicator that refers to all the MPI processes that is
called MPI _ COVM WORL.D.

* TJopologies. A communicator can have a topology
associated with it. This arranges a communicator into some
layout. The most common layout is a cartesian
decomposition.

* Communication modes. MPI| supports multiple styles of
communication, including blocking and non-blocking. Users
can also choose to use explicit buffers for sending or allow
MPI to manage the buffers. The nonblocking capabilities
allow the overlap of communication and computation.

* Single-call collective operations. Some of the calls in MPI

automate collective operations in a single call. For example,
there is a single call to sum values across all the processes

to a single value.

(From K. Dowd and C. Severance. High Performance Computing. O’Reilly 1998).

Writing MPI Programs
| nclude "nmpif. N
| nt eger rank, size
call MPI _INT(ierr)
call MPI _COVWM RANK(MPI _COVM WORLD, r ank)
cal | MPI _COWM SI ZE(MPI _COVM WORLD, si ze)
print *, "hellowrldI’m", rank," of ", size

call MPI _FINALI ZE(i err)

end

(From W. Gropp’s transparencies: Tutorial on MPI. http://www.mcs.anl.gov/mpi).

16

hel | o
hel | o
hel | o
hel | o
hel | o
hel | o
hel | o
hel | o
hel | o
hel | o
hel | o
hel | o
hel | o
hel | o
hel | o
hel | o
hel | o
hel | o
hel | o
hel | o
4.03u

Typical outpu

wor | d
wor | d
wor | d
wor | d
wor | d
wor | d
wor | d
wor | d
wor | d
wor | d
wor | d
wor | d
wor | d
wor | d
wor | d
wor | d
wor | d
wor | d
wor | d
wor | d
0. 43s

of
of
of
of
of
of
of
of
11 of
12 of
10 of
8 of
14 of
13 of
15 of
16 of
19 of
0 of
18 of
17 of

@\l@(ﬂbwl\)l—‘m

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

: 01. 88e 237. 2%

17

Commentary

* include 'npif.h’ provides basic MPI definitions and types
e call MPI _INIT starts MPI
e call Ml _FINALIZE exits MPI

e call MPI_COW RANK(MPI _COW WORLD, rank) returns the

rank of the process making the subroutine call. Notice that
this rank in within the default communicator.

e call MPI _COW SI ZE(MPI _COM WORLD, si ze) returns the
total number of processes involved the execution of the MPI
program.

(From W. Gropp’s transparencies: Tutorial on MPI. http://www.mcs.anl.gov/mpi).

18

Send and Receive Operations in MPI

The basic (blocking) send operation in MPI is
MPI _SEND(buf, count, datatype, dest, tag, conm

where

e (buf, count, dat at ype) describes count occurrences of
items of the form dat at ype starting at buf .

* dest is the rank of the destination in the group associated
with the communicator conmm

® t ag is an integer to restrict receipt of the message.

(From W. Gropp E. Lusk, and A. Skejellum. Using MPI. MIT Press 1996).

19

The receive operation has the form
MPI RECV(buf, count, datatype, source, tag, conmm status)

where

e count is the size of the receive buffer
® sour ce is the id of source process, or VPl _ ANY_ SOURCE
®* tagis amessage tag, or MPlI _ANY_TAG

* st at us contains the source, tag, and count of the message
actually received.

Broadcast and Reduction

The routine MPI _ BCAST sends data from one process to all
others.

The routine MPlI _ REDUCE combines data from all processes
(by adding them in the example shown next), and returnting
the result to a single program.

Second MPI Example: PI

program nmain
I nclude "npif.n
doubl e precision PI25DT

par anet er (PI125DT = 3.141592653589793238462643d0)
doubl e precision nypi, pi, h, sum x, f, a
I nteger n, nyid, nunprocs, i, rc

C function to integrate

f(a) =4.d0 / (1.d0 + a*a)

call MPI _INIT(ierr)
call MPI _COVWM RANK(MPI _COWM WORLD, nyid, ierr)
call MPI _COW SI ZE(MPI _COVMM WORLD, nunprocs, ierr)

print *, "Process ", nyid, " of ", nunprocs, " is alive"
Si zetype =1
sunt ype = 2
10 If (nyid .eq. 0) then
write(6, 98)
98 format (' Enter the nunber of intervals: (0 quits)’)
read(5,99) n
99 format (i 10)

endi f

call MPI _BCAST(n, 1, MPl _| NTEGER, 0, MPl _COVMM WORLD, i err)

C check for quit signal
iIf (n.le. 0) goto 30
C cal culate the interval size
h = 1.0d0/n
sum = 0.0d0
do 20 i = nyid+1l, n, nunprocs

x = h * (dble(i) - 0.5d0)
sum = sum + f(x)
20 conti nue
nypi = h * sum

C collect all the partial suns
cal |l MPI _REDUCE(nypi, pi, 1, MPl _DOUBLE PRECI SI ON, MPI _SUM O,
$ MPI _COVM WORLD, i err)
C node O prints the answer.

If (nyid .eq. 0) then
wite(6, 97) pi, abs(pi - PI25DT)

97 format (' pi is approximately: ', F18. 16,
+ " Error is: ', F18.16)
endi f
goto 10
30 call MPI _FI NALI ZE(rc)
stop
end

(From W. Gropp’s transparencies: Tutorial on MPI. http://www.mcs.anl.gov/mpi).

	Mesage-Passing Parallel Programming with MPI
	What is MPI?
	Features of MPI
	Writing MPI Programs

