
1 of 7

 Locality

2 of 7

Tiling

A time-honored technique to improve locality is
tiling.

We will illustrate its benefits to reduce cache
misses using two simple examples.

3 of 7

Transposing a matrix.
Consider the loop:

for (i=0, i < n, i++) {
for (j=i+1, j < n, j++) {

t=a[j,i]
a[j,i]=a[i,j]
a[i,j] = t

}
}

Assume each cache line contains L array elements. If the cache had
fewer than n cache lines, there would be one cache miss

> on every iteration of the inner loop for each row of a accessed (for
a total of n-i-1 for the whole loop j on iteration i) and

> one cache miss for each line across rows . Why ?

Therefore, number of cache misses would be bounded as follows:

 = n(n-1)(1+1/L)/2

n i– 1– 
L

n i– 1–  n i– 1– 
L

---------------+
i 0=

n 1–

 n i– 1–  n i– 1– 
L

---------------+
i 0=

n 1–



4 of 7

If, on the other hand, we tile the matrix transpose as follows:

for (i=0, i < n, i+=s) { /* assume n multile of s */
transpose(a[i:i+s-1,i:i+s-1])
for (j=i+s, j < n, j+=s) {

transpose(a[i:i+s-1,j:j+s-1], a[j:j+s-1,i:i+s-1])
}

}

where the function transpose transforms its parameter when
there is only one parameter, otherwise transposes the two sub-
matrices and exchanges them.

If the two submatrices fit in the cache, the number of cache
misses will be only n2/L.

5 of 7

Matrix multiplication.
Consider the loop

for (i=1, i <= n, i++) {
for (j=1, j <= n, j++) {

for (k=1, k <= n, k++) {
c[i,j]=a[i,k]*b[k,j]+c[i,j]

}
}

}

If the cache contains fewer than n/L lines, there will be one
cache miss for every execution of the k loop will bring n
misses due to b and n/L due to a. Each execution of the j
loop will bring n/L misses due to c .

Total: n3+n3/L + n2/L

6 of 7

The middle product version of matrix matrix multiplication
behaves better:

for (i=1, i <= n, i++) {
for (k=1, k <= n, k++) {

for (j=1, j <= n, j++) {
c[i,j]=a[i,k]*b[k,j]+c[i,j]

}
}

}

Under the same assumptions, we have that each iteration of
the j loop brings n/L cache misses due to c and the same
number due to b. Each iteration of the k loop brings
additionally n/L misses due to a.

Total: 2n3/L + n2/L

7 of 7

If we now tile matrix matrix multiplication, we get

for (i=1, i <= n, i+=s) { /* assume n multile of s */
for (j=1, j <= n, j+=s) {

for (k=1, k <= n, k+=s) {
 c[i:i+s-1,j:j+s-1] =
 matmul(a[i:i+s-1,k:k+s-1],b[k:k+s-1,j:j+s-1])

}
}

Assumming that the three tiles fit in cache, we will have 2 s2 / L
misses for matmul due to a and b and additionally s2 / L misses
due to c for each iteration of the j loop.

Total: (n/s)3*2 s2/L +(n/s)2* s2/L =2 n3/(s L) + n2/L

