
Dependence analysis

Pattern matching and replacement is all that is needed to 
apply many source-to-source transformations. For 
example, pattern matching can be used to determine that 
the recursion removal transformation presented above is 
valid.

However, it is often necessary to gather additional 
information to determine the correctness of a particular 
transformation. 

Dependence information is widely used for this purpose.

A dependence may be due to data or control 
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Classes of data dependence

Flow dependence (True dependence)

S1 X=A+B

S2 C=X+1

Anti-dependence

S1 A=X+B

S2 X=C+D

Output dependence

S1 X=A+B

. . .

S2 X=C+D

S1

S2

S1

S2

S1

S2
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The notion of dependence assumes a sequential program. 

The equivalent to the notion of dependence for parallel 
programs has been studies by Shasha and Snir (1988).

Notice that the order of execution of two statements 
cannot be changed without further analysis if one of them 
is dependent on the other. 

Also, they cannot be executed in parallel. This is a 
stronger condition. Two statements could be 
interchangeable but not parallelizable.

D. Shasha and M. Snir. Efficient and correct execution of parallel 
programs that share memory. ACM TOPLAS 10(2). 1988.
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Another type of dependence that does not preclude any 

transformation, but is useful to deal with memory issues 

is:

Input-dependence

S1 A=X+B

S2 Y=X+D

S1

S2
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Dependences in loops

do I=1 to N

S1 A=B(I)+1

S2 C(I)=A+2

 

S1 S1 S1 S1 S1

S2 S2 S2 S2 S2

...
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do I =1 to N

S1 X(I+1)=B(I)+1

S2 A(I)=X(I)

 

do I=1 to N

S1 X(I)=B(I)+1

S2 A(I)=X(I+1)+1

 

S1

S2

S1

S2
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Notice that the dependence graph for a loop is a summary 
of the “unrolled” dependence graph. Therefore some 
information is lost. 

For example, the loop

do I=1 to N
S1 X(I)=B(I)+1

S1 A(I)=X(I)

 

has the same dependence graph as the first loop on the 
previous page although their unrolled dependence graphs 
are different as shown on the next page.
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S1 S1 S1 S1

S2 S2 S2 S2

...

do ...
X(I)=
...=X(I)

 

do ...
X(I+1) =
... = X(I)

 

S1 S1 S1 S1

S2 S2 S2 S2

...
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Definition of dependence in loops

do I=1 to N
S1 X(F(I)) = B(I)+1
S2 A(I) = X(G(I))+2

 

We say that iff  I1  I2  and I1,I2[1,N]

such that F(I1)=G(I2)

We say that iff  I1  I2 and I1,I2[1,N]

such that F(I2)=G(I1)

do I=1 to N
S1 A(I) = X(G(I))+1
S2 X(F(I)) = B(I)+2

 
We say that iff  I1  I2  and I1,I2[1,N]

such that F(I1)=G(I2)

S1

S2

S1

S2

S2

S1



Testing the conditions above could be very expensive in 
general. However, most subscript expressions are quite 
simple and can be easily analyzed.

The approach that has traditionally been used is to try to 
break a dependence, that is to try to prove that the 
dependence does not exist.

Practical tests are usually conservative. That is, they may 
not break a dependence that does not exist. Assuming a 
dependence that exists is conservative but will not lead to 
incorrect transformations for the cases discussed in this 
course.
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A simple conservative test

The GCD test assumes that 

 F(I) = A1I+A0 and G(I) = B1I+B0

Then, F(I1)=G(I2) iff A1I1-B1I2=A0-B0

The test breaks the dependence if there is no integer 
solution to the equation, ignoring the loop limits. This is 
conservative because the equation could have solutions 
outside the iteration space only.

There is a solution to the equation A1I1-B1I2=A0-B0 iff 
the greatest common divisor of A1 and B1 divides A0-B0 
11



A more accurate test

To take into account the loop limits we could apply 
Banerjee’s test which proceeds by finding an upper bound 
U, and a lower bound L of A1I1-B1I2 under the constrains 
that 1 I1  I2  N.

If either L > A0-B0 or U < A0-B0, then the functions 
do not intersect, and therefore we know there is no flow 
dependence.

For example, consider the loop
do I=1 to 5

S1 X(I+5) = B(I)+1
S2 A(I) = X(I)+2

If we apply the GCD test, we will find that there is a 
solution to the equation A1I1-B1I2=A0-B0 or I1-I2=5, 
the dependence will not be broken because the equation 
has an integer solutions.

However, the upper limit of A1I1-B1I2= I1-I2 is 4, which 
is < A0-B0 and therefore the dependence would be broken 
by the second test.
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Direction vectors

One way to increase the accuracy of a dependence graph is with 
direction vectors. For example, the two unrolled dependence 
graphs on page 8 could be distinguished by annotating the 
dependence arc with either = (to indicate that the dependence in 
within the same iteration) or < (to indicate that the dependence 
goes across iterations). 

In general, given a multiply-nested loop
do I1=

do I2=
...

do Id=
X(F(I1,I2,...,Id))= ...
... = X(G(I1,I2,...,Id))

our second test would check dependences for each possible 
direction.
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For all valid direction vectors (dwith each i 
is either <, >, or =, the second test tries to show that there 
is no solution to the equation: 

F(I11,I21,...Id1) = G(I12,I22,...Id2)

within the loop limits, with the restrictions: 

I11 I12,   I21 I22, ..., Id1 dId2.

These restrictions are taken into account when computing 
the upper and lower limits (in the complete test, there is a 
pair of lower and upper limits for each loop index).

If a dependence for a given direction is not broken, an arc 
annotated with the appropriate direction will be added to 
the graph.

For more details see (Wolfe and Banerjee 1987).

M. Wolfe and U. Banerjee. Data dependence and its applications to
parallel processing. IJPP 16(2). 1987
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There are many reasons why  Banerjee’s test is 
conservative:

1. It only checks that there is a real valued solution to the 
equations. The solution does not have to be integer. 
Therefore, failure to break the dependence does not 
imply that the dependence exists.

2. For multiple subscript arrays, each subscript equation is 
tested separately. A dependence will be assumed if there 
is a solution for each separate equation. This is 
conservative because the system of equations may not 
have a solution even though each equation has a 
solution.

3. It is assumed that the loop limits and the coefficients are 
known constants. This can be relaxed in that the loop 
limit can be assumed to be infinity and the test would 
still work. However, if one of the coefficients is not 
known a dependence is assumed.
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Other tests

Pugh (1992) has developed an accurate test that does not 
have many of the limitations just mentioned. 

However, Petersen and Padua (1996) did not detect any 
significant effect of the Omega test on the parallelism 
detected in a collection of real codes. However, the Omega 
test produced a substantially more accurate dependence 
graph which could be important in many situations.

Blume and Eigenmann (1994) developed a dependence 
test capable of dealing with symbolic coefficients in 
subscript expressions. 

P. Petersen and D. Padua. Static and Dynamic Evaluation of 
Data Dependence Analysis Techniques. IEEE Transactions 
on Parallel and Distributed Systems. Vol. 7, No. 11, pp. 1121-1132. 
Nov, 1996. (CSRD Report No. 1509)

W. Blume and R. Eigenman. The Range Test: A dependence test 
for symbolic, non-linear expression. Proceedings of 
Supercomputing ‘94. 1994.
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Scalar expansion and privatization

Some arcs in the dependence graph of a loop can be 
eliminated by using elementary transformations.

DO I=1,N

S1: A=B(I)+1

S2: C(I)=A+D(I)

END DO

DO I=1,N

S1: A1(I)=B(I)+1

S2: C(I)=A1(I)+D(I)

END DO

A=A1(N)

For a scalar to be expandable, in all iterations the scalar 
should be written before it is read.

S1

S2

S1

S2
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A expandable scalar can also be privatized. That is, when 
multiple processors cooperate in the execution of a parallel 
loop, each processor will have its own copy of the private 
loop variables. 

Automatic privatization of scalars is relatively easy. For 
arrays, the algorithm is substantially more complex. See 
(Tu and Padua 1973) for more details.

P. Tu and D. Padua. Automatic Array Privatization. Springer-Verlag 
LNCS 768. 1993.
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Control dependences

Informally if a statement Y is control dependent on X then X 
must have two or more exits. Following one of the exits from 
X always results in Y being executed, while taking one of the 
other exits may result in Y not being executed.

X could be an if predicate, a computed goto statement, a 
subroutine call with multiple locations where to return, etc.

The formal definition, due to Ferrante et al. (1987) is:

Definition. A node Y of a control flow graph is control 
dependent on node X iff

1. There exists a path from X to Y all of whose interior nodes 
are post-dominated by Y.

2. X is not post-dominated by Y.

Condition 1 is satisfied by a path consisting of just an edge.

Definition. A node V is postdominated by node W if every 
path from V to the END node contains W.

J Ferrante et al. The program dependence graph and its use in 
optimization. ACM TOPLAS 9(3). 1987
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