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2. Machine Organization



2 of 53

Origins

Charles Babbage in the 19th Century

Turing Machine

Early 20th Century machines  

[see http://en.wikipedia.org/wiki/Harvard_Mark_I]


http://en.wikipedia.org/wiki/Harvard_Mark_I

http://en.wikipedia.org/wiki/Harvard_Mark_I 
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For an instruction to be executed, there are several steps that 
must be performed. For example:
1. Instruction Fetch and decode (IF). Bring the instruction from 

memory into the control unit and identify the type of 
instruction.

2. Read data (RD). Read data from memory.
3. Execution (EX). Execute operation.
4. Write Back (WB). Write the results back.
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processor.
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ok (1/2)
Von Neuman machines in the Textbo
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ok (2/2)
Von Neuman machines in the Textbo
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Example: Intel Core i7 (1/2) 
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Example: Intel Core i7 (2/2)
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Performance

Floating Point operations per second (Flops/second)
Name FLOPS
yottaFLOPS 1024

zettaFLOPS 1021

exaFLOPS 1018

petaFLOPS 1015

teraFLOPS 1012

gigaFLOPS 109

megaFLOPS 106

kiloFLOPS 103

Memory Bandwidth (Bytes/sec; gigaBytes/sec, megaBytes/sec)
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Measuring Performance (1/2)
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Measuring Performance (2/2)
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Moore’s Law (1/4)

From Wikipedia:

The law is named after Intel co-founder Gordon E. Moore, who 
described the trend in his 1965 paper. The paper noted that the 
number of components in integrated circuits had doubled every year 
from the invention of the integrated circuit in 1958 until 1965 and 
predicted that the trend would continue "for at least ten years".

The law does not say that microprocessor performance or clock 
speed doubles every two years 

Nevertheless, clock speed did in fact double every two years from 
roughy 1975 to 2005, but has now flattened at about 3 GHz due to 
limitations on power dissipation.
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Moore’s Law (2/4)

Figure from Moore’s 1965 paper 
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Moore’s Law (3/4) - Implications
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Moore’s Law (4/4) - Performance Enhancements
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Pipelining (1/3)
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Pipelining (2/3)

Example: A(:)=B(:)*C(:)
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Pipelining (2/3)
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Software pilelining example

do i=1,N
A(i) = s * A(i)

enddo

loop: load A(i)
mult A(i) = A(i) * s
store A(i)
i = i + 1
branch -> loop

loop: load A(i+6)
mult A(i+2) = A(i+2) * s
store A(i)
i = i + 1
branch -> loop

translationtranslation to lower level language

software pipelining
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Assume:

• Load pipeline 4 stages

• Multiply and store a single 
step each

Loads start at each step to 
keep pipeline busy.
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ld A(i+5)

pattern repeats:
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Superscalarity

• Multiple instructions can be fetched and decoded concurrently 
(3–6 nowadays).

• Address and other integer calculations are performed in 
multiple integer (add, mult, shift, mask) units (2–6). This is 
closely related to the previous point, because feeding those 
units requires code execution.

• Multiple floating-point pipelines can run in parallel. Often 
there are one or two combined multiply-add pipes that 
perform a=b+c*d with a throughput of one each.

• Caches are fast enough to sustain more than one load or store 
operation per cycle, and the number of available execution 
units for loads and stores reflects that (2–4).
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SIMD

It means: SINGLE Instruction/Multiple Data (see below)

The main idea is that there is asingle control unitl with the ability 
to control mutiple identical operations with each instruction.

The book does not mention it, but the most famous and 
influential SIMD machine is Illiac IV (U of I ca. 1960s)

Today, it can be found in GPGPUs and microporcessor vector 
extensions (SSE[Intel], AltiVec[IBM],...)
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CPU.

• Hit and Miss ratios: When the data is found
have a cache hit, otherwise it is a miss. Hen
and Hit Ratio (HR)(= 1-MR) are the fraction
hit or miss respectively.

• Average access time: If all the data fits in m

average memory access time = 
MR * main memory access time + HR * cac

• In the textbook 

1. hit ratio (HR) is called cache reuse r
2. main memory access time is Tm 
3. cache access time is Tc=Tm/τ
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• Cache line: When there is a cache miss, a fixed size block of 
consecutive data elements, or line, is copied from main 
memory to the cache. Typical cache line size is 4-128 bytes.

• Main memory can be seen as a sequence of lines, some of 
which can have a copy in the cache. 

• Placement of lines in the cache: Caches are divided into sets of 
lines. Cache lines from memory can be mapped to one and 
only one set. The set is usually chosen by bit selection:                         
line address MOD number of sets in the cache.

> If there is a single set, the cache is said to be fully 
associative.

> If there are as many sets as lines in the cache, the cache 
is said to be direct mapped.

> Otherwise, if the are two or more sets, each containing 
exactly n elements, the cache is said to be n-way   
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Set associative

set 0 set 1 set 2 set 3
•

Fully Direct mapped 
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• Writes are processed in one of two ways:

> Write through: Data is written both to mai
cache. Memory and cache are kept consis

> Write back: memory is updated only when
replaced.
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Programming for Locality

• Program locality was defined above as a tendency towards 
repetitive accesses. We say that program locality increases 
when this tendency becomes stronger by having repetitions 
happening on the average within shorter time spans. 

• Program locality can be controlled by the programmer to a 
certain extent by reorganizing computations. 

• Consider the following loop where f(i,j) is any function of i 
and j:

for i=1:n
for j=1:n

A(j)=A(j)+f(i,j)
end

end

The elements of A are re-referenced every n iteration of the 
inner loop. So, once an item has been referenced, the 
average “time” between repetitions is n iterations. 
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• If the loop headers are interchanged:
for j=1:n

for i=1:n
A(j)=A(j)+f(i,j)

end
end

we obtain a semantically equivalent loop, but now the “time” 
between repetitions is reduced to one iteration.

• we can say that the new loop has better locality.

• A similar transformation can be applied to straight line code 
by “clustering” uses and definitions of variables:

a=...
b=...
c=...
...
...=a
...=b

a=...
...=a
b=...
...=b
c=...
...
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• The great benefit of incresing locality is that it tends to reduce 
the time to access memory.

• In the case of registers, allocation is required. 

Typically done by compiler or, less often, manually by the 
programmer.

Programs with better locality tend to require fewer register 
spills and loads.

• In the case of caches and paged main memory, the program 
will tend to have fewer misses and therefore fewer accesses to 
lower levels of the hierarchy.
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• Another example was a workstation cluster at
which consisted of about 400 Silicon Graphics
workstations. The system is used to analyze ac
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• Here we have our first parallel computing pla

• Performance will depend on communication t

• Topically, multicomputers communicate via m
time for a message to go from source to destin
latency, is modeled by the formula where σ is 

τ is the transfer time per data item, and n is th
data items to be sent.

•

σ nτ+
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• The time for a message or communication lat
represented by the formula:
sender overhead+time of flight+transmission time+

> sender overhead is the time consumed by th
inject the message into the interconnection

> time of flight is the time for the first bit of t
arrive at the receiver

> transmission time is the time for the rest of
arrive at the receiver after the first bit has 

> receiver overhead is the time for the proces
message from the interconnection network

• The τ of the above formula could contain com
terms of this formula except for time of flight
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Shared-Memory Multiprocessors

• In shared-memory multiprocessors, there is a
that can be accessed by all processors in the sy
address within that space represents the same
processors.

• The shared address space does not require a si
memory module.
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• As discussed above, there are other forms of p
are widely used today. These usually coexist w
grain parallelism of multicomputers and mult
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• Multiple functional units
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IALU

BRANCH
• VLIW (Very Long Instruction Word) process
important class of multifunctional processors.
each instruction may involve several operatio
performed simultaneously.This parallelism is u
by the compiler and not accessible to the high
programmer. However, the programmer can c
of parallelism in assembly language.   

Register File

Memory

LD/ST FADD FMUL

LD/ST FADD FMUL IALU
Instruction 

Word

Multifunction Processor (VLIW)
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Flynn’s Taxonomy

• Michael Flynn published a paper in 1972 in w
two characteristics of computers and tried all
combinations. Two stuck in everybody’s mind
didn’t:

• SISD: Single Instruction, Single Data. Conven
Neumann computers.

• MIMD: Multiple Instruction, Multiple Data. M
and multiprocessors.

• SIMD: Single Instruction, Multiple Data. Arr

• MISD: Multiple Instruction, Single Data. Not
perhaps not meaningful.
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