2. M achine Organization

][1 of 53
1867

origins

Charles Babbagein the 19th Century

Turing M achine

Early 20th Century machines

[see http://en.wikipedia.org/wiki/Harvard Mark 1]

2 of 53

http://en.wikipedia.org/wiki/Harvard_Mark_I

http://en.wikipedia.org/wiki/Harvard_Mark_I

The VVon Neumann Computational M od€l

[Almas and Gottlieb: Highly Parallel Computing. Benjamin
Cummings, 1988.]

* |AS (Institutefor Advanced Sudy (1AS), in Princeton)
Designed by John Von Neumann in the late 1940s.

e All widely used “ conventional” machines follow this model. It
ISrepresented next:

PROCESSOR
ARITHMETIC
UNIT
. -
registers
logic
CONTROL
—>
| nstruction counter
MEMORY
holds instructions and -
data
— 1/0O

1 3 of 53
1867

For an instruction to be executed, there are sever al stepsthat
must be performed. For example:

1.

N

P

| nstruction Fetch and decode (I F). Bring theinstruction from
memory into the control unit and identify the type of
instruction.

Read data (RD). Read data from memory.
Execution (EX). Execute oper ation.
Write Back (WB). Writetheresults back.

4 of 53

The machine s essential features ar e;

1. A processor that performsinstructions such as“add the
contents of these two register s and put theresult in that
register”

2. A memory that stores both theinstructions and data of a
program in cells having unique addr esses.

3. A control scheme that fetches one instruction after another
from the memory for execution by the processor, and
shuttles data one word at a time between memory and
[pr ocessor.

5 of 53

VVon Neuman machinesin the Textbook (1/2)

L1 data
] cache

Memory queue
INT reg. file

s |2 unified cache

Main memory

P
mult

!

L1 instr.
cache

FP
add

INT/FP queue
FP reg. file

Memory
interface

1 6 of 53

VVon Neuman machinesin the Textbook (2/2)

Larger but slower

* Main memory (DRAM)
* Level 2 cache

* Level 1 cache

y ¥ Regsters

Smaller but faster

Main memory

L2 cache i
L1 cache E
U_fwﬁr’_ff:il

| Registers |

\ Arithmetic units /

7 of 53

Example: Intel Corei7 (1/2)

I 8 of 53

Example: Intel Corei7 (2/2)

Memory Controller

] 9 of 53
1867

Per for mance

Floating Point oper ations per second (Flops/second)

Name FL OPS
yottaFL OPS 10°4
zettaFL OPS 1041
exaFL OPS 1018
petaFL OPS 101°
teraFL OPS 1012
gigaFL OPS 10°
megakFL OPS 10°
kiloFL OPS 103

Memory Bandwidth (Bytes/sec; gigaBytes/sec, megaBytes/sec)

10 of 53

M easuring Perfor mance (1/2)

double precision, dimension(N) :: A,B,C,D

1
2 double precision :: S, E,MFLOPS

3

4 do i=1,N !initialize arrays

s A(i) = 0.d0; B(i) = 1.d0

¢ C(i) = 2.d0; D(i) = 3.d0

7 enddo

3

9 call get_walltime(S) ! get time stamp

w do j=1,R

n do i=1,N

12 A(i) = B(i) + C(1) = D(i) ! 3 loads, 1 store

i3 enddo

4 if(A(2).1t.0) call dummy(A,B,C,D) ! prevent loop interchange
15 enddo

16 call get_walltime (E) ! get time stamp

17 MFLOPS = R«N+2.d0/((E-S)+1.d6) ! compute MFlop/sec rate

$include <sys/time.h>

I
3 void get_walltime_(double+ wcTime) {
4 struct timeval tp;

s gettimeofday (¢tp, NULL);

6 swclime = (double) (tp.tv_sec + tp.tv_usec/1000000.0);
L

8

9 void get_walltime (doubler wcTime) {

10 get_walltime (wcTime);

n o}

11 of 53

M easuring Performance (2/2)

4000

3000

- — - Netburst 3.2 GHz (2004)
— — Core23.0GHz (2006) |

@ —— Corei72.93 GHz (2009) |
‘é’_ 2000 == NEC SX-82.0GHz
™ B
= = S g Seee e
10004
i ‘\ \
» d \ i
B \4 ~ R
0 e o s1er 1 [0 |-||. Ll AERRTTT BT AR TTIT _II‘I-“I‘I'r-.-;TI 1 |u|i—
10’ 10° 10° 10* 10° 10° 10

N

12 of 53

Moore's L aw (1/4)

From Wikipedia:

The law is named after Intel co-founder Gordon E. M oore, who
described the trend in his 1965 paper. The paper noted that the
number of components in integrated circuits had doubled every year
from the invention of the integrated circuit in 1958 until 1965 and
predicted that the trend would continue "for at least ten years".

Thelaw does not say that microprocessor performance or clock
speed doubles every two year s

Nevertheless, clock speed did in fact double every two year s from
roughy 1975 to 2005, but has now flattened at about 3 GHz dueto
limitations on power dissipation.

13 of 53

Moore's L aw (2/4)

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

16-Core SPARC T3
Six-Core Core i7,

2,600,000,000 e Xoon 7400\, o ¢10.Cae Xoon Wesimer-£X
Figure from M oore's 1965 paper DulCostanumze © oo gomePowen
110000000007 tanium 2 with SMB cad\::g\‘f E::.\ \;;‘ufm 2?&? o
16 \Com i7 touagim on
- ore 2 Duo
15 Itanium 2@ ll
§ 51 100,000,000
%g If 1 Pentium 4 ® Atom
5 dume,
s . = curve shows transistor AMD K6
g §- E % 10,000,000 czunt doubling evéry $oco henium i
3 E & 8 two years AMDKS
& B - Pentium
; 4 - Q
3 3 w
? D 1,000,000
C
=
Year 100,000
10,000
aose /7
2.300 = 4004@ “Rea 1802
T T T T]
1971 1980 1990 2000 2011

Date of introduction

] 14 of 53

Moore's L aw (3/4) - Implications

* Smaller circuits are more
efficient, so one can either

* maintain same clock
speed but use less
power

* maintain same power
but increase clock w0 w0 o me mo

speed (historical trend)

* maintain same power

and clock speed but
increase functionality
(current trend)

% Limit on power (heat
dissipation has halt
further increase in clock

speeds

] 15 of 53
1

M oore's Law (4/4) - Performance Enhancements

For given clock speed, increasing performance depends
on producing more results per cycle, which can be
achieved by exploiting various forms of parallelism

* Pipelined functional units

* Superscalar architecture (multiple instructions per cycle)

* Qut-of-order execution of instructions

+ SIMD instructions (multiple sets of operands per instruction)
* Memory hierarchy (larger caches and more levels of cache)

Multicore and multithreaded processors

1 16 of 53
1

Pipelining (1/3)

* Analogous to manufacturing assembly line: each station performs
same task on each object, with different objects at each station

simultaneously
Simple instruction pipeline: fetch — decode — execute
* first instruction is fetched
* second instruction is fetched while first instruction is decoded

* third instruction is fetched while second is decoded and first is
executed, etc.

* Complex instructions may have many more stages, with

correspondingly deeper pipeline

1 17 of 53
1

Pipelining (2/3)

Example: A(C)=B(G)*C(:)

1 2 3 4 5 N N+1 N+2 N+3 N+4
X : -
Cycle
Separate B(1)| | B(2)| B(3) B(4) |B(5) B(N) ||= -]
mant./exp. C(1l)| €(2) |C(3) c(4) | c(35) c(w) Wind-down
B(l) B(2) B(3) B(4) Bix-1y B(H)
c(1) c(2) c€(3) C(4) c(¥-1)| C(H)
Add B(1l) 'n{z; B(3) B{N-3) n(l—ul : B(H)
exponents C(l) €(2) | c(3) cun-2)| | e-1)| C(H)
A A A
Insert - Wind-up o A A A A
sign A1) (§-4) | (N-3) | (%-2) | (§-1) |R(F)

18 of 53

Pipelining (2/3)

Speedup from pipelined processing of N objects in m stages

Tope N +m—1

approaches m for large N

1 1w 10 1000

] 19 of 53

Softwar e pilelining example

do i=1,N translation to lower level language
A(i) = s * A(1) —
enddo
loop: load A (i)
mult A(i) = A(1) * s software pipelining
store A(1i)
i=i+ 1 —>

branch -> loop

loop: load A (i+6)
mult A(i+2) = A(i+2) * s
store A(l)
i=14+1
branch -> loop

1 20 of 53
1867

Id
A1)

Id
A

mul

Id
AR

A(D)

mul

Id
A

A(2)

mul

Id
A5)

A3)

mul

A4

mul

Id
A(6)

A(5)

mul

Id
A()

A(6)

mul

Id
A(8)

A()

mul

Id
A(9)

A(8)

mul

A(9)

Assume:

* L oad pipeline4 stages

* Multiply and store a single
step each

L oads start at each step to
keep pipeine busy.

21 of 53

A1)

mul

AP

A(D)

mul

A(3)

A2

mul

A4

A3)

mul

A(5)

A4S

mul

A(6)

A(5)

mul

A()

A(6)

mul

A(8)

A()

mul

A(9)

A(8)

mul

A(9)

Id A(L)

22 of 53

A1)

mul

AP

A(D)

mul

A(3)

A2

mul

A4

A3)

mul

A(5)

A4S

mul

A(6)

A(5)

mul

A()

A(6)

mul

A(8)

A()

mul

A(9)

A(8)

mul

A(9)

Id A(L)
Id A(2)

23 of 53

Id
s 2 P ———
Id
A(2)
Id
mul AB)
s Id
st mul A
AQ)| s \d
st mul AG)
A | s Alzje)
st mul
AR | s A'g)
st mul
A@| s AIEjS)
st mul
AG)| s \d
st mul AO)
A(6) s
st mul
A s
st mul
A(8) s
st
A(9)

Id A(L)
Id A(2)
Id A(3)

24 of 53

Id
AQ)
Id
e e 2 P R
Id
mul AB)
s Id
st mul A
AQ)| s \d
st mul AG)
A | s Alzje)
st mul
AR | s A'g)
st mul
A@| s AIEjS)
st mul
AG)| s \d
st mul AO)
A(6) s
st mul
A s
st mul
A(8) s
st
A(9)

Id A(L)
Id A(2)
Id A(3)
Id A(4)

25 of 53

Id
AD)
Id
A2
Id
mul_
s Id
st mul A
AQ)| s \d
st mul A®)
A | s \d
st mul AB)
AR | s \d
st mul A
A@| s AIEjS)
st mul
AG)| s Alfg)
st mul
A(6) s
st mul
A7) s
st mul
A(8) s
st
A(9)

Id A(2)
Id A(2)
Id A(3)
Id A(4)
mul s

Id A(5)

26 of 53

Id
AD)
Id
A2
Id
mul AB)
s Id
stmul*
AQ)| s \d
st mul A®)
A | s Alzje)
st mul
AR | s A'g)
st mul
A@| s AIEjS)
st mul
AG)| s \d
st mul A©)
A(6) s
st mul
A7) s
st mul
A(8) s
st
A(9)

Id A(2)
Id A(2)
Id A(3)
Id A(4)
mul s

Id A(5)
st A(D)
mul s

Id A(6)

27 of 53

Id
A()
Id
A(2)
Id
mul AB)
s Id
st mul A
AQ)| s \d
stmul*
A | s Alzje)
st mul
AR | s A'g)
st mul
A@| s AIEjS)
st mul
AG)| s \d
st mul A©)
A(6) s
st mul
A7) s
st mul
A(8) s
st
A(9)

Id A(2)
Id A(2)
Id A(3)
Id A(4)
mul s

Id A(5)
st A(D)
mul s

Id A(6)
st A(2)
mul s

Id A(7)

28 of 53

Id
A
Id
A2
Id
mul AB)
s Id
st mul A
AQ)| s Id
st mul A®)

A2 s Id
+
AQ)| s Id

st mul A
A s Id
st mul A®
AG)| s Id
st mul A©)
A(6) s
st mul
A7) s
st mul
A(8) s
st
A(9)

Id A(2)
Id A(2)
Id A(3)
Id A(4)
mul s

Id A(5)
st A(D)
mul s

Id A(6)
st A(2)
mul s

Id A(7)
st A(3)
mul s

Id A(8)

29 of 53

Id
A()
Id
A(2)
Id
mul AB)
s Id
st mul A
AQ)| s \d
st mul A®)

A | s \d
W
AR | s \d

st mul A
A@| s AIEjS)
st mul
AG)| s Alfg)
st mul
A(6) s
st mul
A7) s
st mul
A(8) s
st
A(9)

Id A(2)
Id A(2)
Id A(3)
Id A(4)
mul s

Id A(5)
st A(D)
mul s

Id A(8)

patter n repeats:
st A(i)

mul s (byA(i+1))
Id A(i+5)

30 of 53

Superscalarity

Multipleinstructions can befetched and decoded concurrently
(3—6 nowadays).

Address and other integer calculations are performed in
multipleinteger (add, mult, shift, mask) units (2-6). Thisis
closely related to the previous point, because feeding those
unitsrequires code execution.

Multiple floating-point pipelinescan run in parallel. Often

there are one or two combined multiply-add pipes that
perform a=b+c*d with athroughput of one each.

Caches are fast enough to sustain more than oneload or store

oper ation per cycle, and the number of available execution
unitsfor loads and storesreflectsthat (2-4).

31 of 53

SIMD

It means. SINGL E Instruction/M ultiple Data (see below)

Themain ideaisthat thereisasingle control unitl with the ability
to control mutipleidentical operations with each instruction.

The book does not mention it, but the most famous and
iInfluential SIM D machineisllliac 1V (U of | ca. 1960s)

Today, it can be found in GPGPUs and micropor cessor vector
extensions (SSE[I ntel], AltiVec[IBM],...)

|.. 32 L 32 L 32 L 32 L
™= i b 5 ez = |
[% 1 o [% T =]
| Ya | Y3 | Y2 | Ys |
| C) (')
™ " ™ V. 4 1"‘\\ .-"' 3 PV b
3 g N & &
+) +) (+) .
! | !
| ra | rs | re | B |

32 of 53

Memory Hierarchy and Cache Memories

* Programstend to exhibit temporal and spatial locality:

Temporal locality: Once programs access a data items or
instruction, they tend to accessthem again in the near term.

Spatial locality: Once programs access a data items or
instruction, they tend to access near by data items or
instruction in the near term.

* Memory isorganized in a hierarchy.

Aswe move farther away from the CPU, memory components
become (1) slower, (2) larger, and (3) less expensive per bit .

MEMORY

PROCESSOR

ARITHMETIC
UNIT

registers

W i —P
logic
CONTROL

Instruction counter

Main -« » 1/O Devices

cache

33 of 53

g =i

18¢

Cacheisthefirst level of the memory hierarchy outside the
CPU.

Hit and Missratios: When the data isfound in the cache, we
have a cache hit, otherwiseit isa miss. Hence Miss Ratio (M R)
and Hit Ratio (Hg)(= 1-M) arethe fraction of references that
hit or missrespectively.

Aver age accesstime: If all thedata fitsin main memory:

aver age memory accesstime =

Mg * main memory accesstime + Hi * cache accesstime
| N the textbook

1. hit ratio (HR) iscalled cachereuseratio (B)
2. main memory accesstimeis T
3. cache accesstimeis T =T/t

34 of 53

® Cacheline: When thereisa cache miss, a fixed size block of

consecutive data elements, or line, is copied from main
memory to the cache. Typical cacheline sizeis4-128 bytes.

* Main memory can be seen as a sequence of lines, some of
which can have a copy in the cache.

* Placement of linesin the cache: Cachesaredivided into sets of

lines. Cachelines from memory can be mapped to one and
only oneset. Theset isusually chosen by bit selection:
line address M OD number of setsin the cache.

> If thereisasingle set, the cacheissaid to be fully
associative.

> If thereare as many setsaslinesin the cache, the cache
Issaid to be direct mapped.

> Otherwisg, if the aretwo or more sets, each containing
exactly n elements, the cacheis said to be n-way

35 of 53

k
e
b

- - S S S set 3

Fully Direct mapped Set associative

][36 of 53

Replacement strategy: When a miss occurs and the cacheis

fully associative or n-way set associative, one of the cachelines
must bereplaced. Candidates for replacement arethelinesin
the set wheretheincoming line can be placed. I n the case of
direct mapped caches, thereisonly one candidate for
replacement.

> Random: candidate lineto bereplaced israndomly
selected.

> L east recently used (LRU): Thecandidatelinethat hasbeen
unused for thelongest timeisreplaced.

> First in, First out(FIFO): The candidate line that has been
INn the cache for thelongest timeisreplaced.

Writes ar e processed in one of two ways:

> Writethrough: Data iswritten both to main memory and
cache. M emory and cache are kept consistent.

> Write back: memory isupdated only when thelineis
replaced.

37 of 53

Programming for Locality

* Program locality was defined above as a tendency towar ds

repetitive accesses. We say that program locality increases
when thistendency becomes stronger by having repetitions
happening on the aver age within shorter time spans.

* Program locality can be controlled by the programmer to a
certain extent by reor ganizing computations.

* Consider thefollowing loop where f (i, j) isany function of i
and j:
for i=1:n
for j=1:n
A(J)=A(])+£(1,7)
end
end

The elementsof A arere-referenced every n iteration of the
Inner loop. So, once an item has been referenced, the
aver age “time”’ between repetitionsisn iterations.

38 of 53

I f the loop header s are interchanged:
for j=1:n
for i=1:n
A(j)=A(3)+£(1,3)
end
end

we obtain a semantically equivalent loop, but now the “time”
between repetitionsisreduced to oneiteration.

we can say that the new loop has better locality.

A similar transfor mation can be applied to straight line code
by “ clustering” uses and definitions of variables:

a=. a=
b= ...=a
C= b=...
+
=b

39 of 53

* Thegreat benefit of incresing locality isthat it tendsto reduce
the time to access memory.

* |Inthecaseof registers, allocation isrequired.

Typically done by compiler or, less often, manually by the
programmer.

Programs with better locality tend to require fewer register
spills and loads.

* |In the case of caches and paged main memory, the program

will tend to have fewer misses and therefore fewer accesses to
lower levels of the hierarchy.

40 of 53

Multicomputers

* A natural way to get parallelism given a collection of
conventional computersisto connect them:

| nter connection Networ k

¢ Each machine can proceed independently and communicate
with the othersvia the interconnection networKk.

* Therearetwo main classes of multicomputers:. cluster s and

distributed-memory multiprocessors. They are quite ssimilar,
but the latter isdesigned as a single computer and its

41 of 53

componentsaretypically not sold separ ately whileclustersare
made out of off-the-shelf components.

Furthermore, a cluster consists of a collection of
INnter connected whole computers (including 1/0) used as a
single, unified computing resour ce.

Not all nodes of a distributed memory multiprocessor need
have complete | /O resour ces.

* An exampleof cluster isa web server

request — /
DDDDDD -

router dispatcher

42 of 53

Another example was a wor kstation cluster at Fermilab,
which consisted of about 400 Silicon Graphicsand | BM

wor kstations. The system isused to analyze acceler ator events.
Analyzing any one of those events has nothing to do with
analyzing any of the others. Each machine runs a sequential
program that analyzes one event at atime. By using sever al
machines it is possible to analyze many events ssimultaneously.

M ost important for parallel programming are high-end
cluster sthat pervade the Top500

Architecture / Systems
November 2008

Cluster

Others

43 of 53

Perfor mance | ssuesin Multicomputers

* Herewehaveour first parallel computing platform.
* Performance will degpend on communication time.

® Topically, multicomputers communicate via messages. The

time for a message to go from source to destination, the
latency, is modeled by the formula where o isthe startup cost,

oc+Nnt

T isthetransfer time per dataitem, and n isthe number of
data itemsto be sent.

44 of 53

18¢

Thetimefor a message or communication latency can also be
represented by the formula:
sender over head+time of flight+transmission time+receiver over head

=

>

>

=>

sender overhead isthe time consumed by the processor to
INject the message into the interconnection networ K.

time of flight isthetimefor thefirst bit of the message to
arrive at thereceiver

transmission timeisthetimefor therest of the message to
arrive at thereceiver after thefirst bit hasarrived

receiver over head isthetime for the processor to pull the
message from the interconnection networKk.

Thet of the above for mula could contain components from all
ter ms of thisformula except for time of flight.

45 of 53

e Communication costs per item transferred arereduced if the
length of the message increases. Aswill be discussed later, the
problem isnot smply to increasethe size of messages since the
program may attain such increase at the expense of
parallelism.

¢ Communication costs can also bereduced if communication is
over lapped with computation or other communication. Thisis
called latency hiding. To benefit from latency hiding, the
program must be organized so that dataissend asearly as
possible and check for itsavailability as late as possible.

46 of 53

Shared-M emory M ultiprocessors

* |n shared-memory multiprocessors, thereisan address space

that can be accessed by all processorsin the system. An
address within that space representsthe same location in all

Processor s.

* Theshared address space doesnot requireasingle, centr alized
memory module.

1 47 of 53
1867

The smplest form of a shared-memory multiprocessor isthe
symmetric multiprocessor (SM P). By symmetric we mean that
each of the processor s has exactly the same abilities. Therefore
any processor can do anything: they all have equal accessto
every location in memory; they all can control every | /O device
equally well, etc. I n effect, from the point of view of each
processor therest of the machine looksthe same, hencethe
term symmetric

v V V V
| Cache || Cache | [Cache || Cache | Some levels of
cache could be
shared.
| nterconnect

#

Rest of MEMORY |/O
holds instructions and
data [

LAN | Disks

48 of 53

An alter native design are distributed shared-memory. These
are also called NUM A (nonuniform memory accesses)
machines. These designsreduce the cost of accessto |ocal
memory and ar e a cost-effective way of scaling the memory
bandwidth if most of the accesses are to local memory.

I nter connection Networ k

* |n shared-memory multiprocessor s communication and

synchronization istypically implemented exclusively by write
and read oper ations on the shared addr ess space.

49 of 53

Other Formsof Parallalism

* Asdiscussed above, there are other forms of parallelism that

are widely used today. These usually coexist with the coar se
grain parallelism of multicomputers and multiprocessors.

* Pipeining of the control unit and/or arithmetic unit.

* Multiplefunctional units

PROCESSOR
ARITHMETIC

UNIT
INZENZENZEE=" o .

CONTROL

I nstruction counter

MEMORY
holds instructions and <
data

* Most microprocessor stoday take advantage of thistype of
parallelism.

__L 50 of 53

VLIW (Very Long Instruction Word) processors are an

important class of multifunctional processors. Theideaisthat

each instruction may involve sever al operationsthat are

performed simultaneoudly. T hisparallelism isusually exploited
by the compiler and not accessible to the high-level language
programmer. However, the programmer can control thistype

of parallelism in assembly language.

Multifunction Processor (VLIW)

Memory

n

Register File

LD/ST

Instruction
Word

FADD

A

FMUL

IALU

LD/ST

FADD

FMUL

IALU

BRANCH

51 of 53

* Array processors. Multiple arithmetic units

PROCESSOR ' ' ' '
ARITHMETIC ARITHMETIC ' ARITHMETIC ARITHMETIC
UNIT UNIT -— UNIT — UNIT -—
registers registers W registers W registers
logic logic logic logic
CONTROL
- - - |
I nstruction counter
MEMORY <€ | MEMORY -€— | MEMORY ~— MEMORY -
holds instructions and holds instructions and holds instructions and holds instructions and
data data data data
* |lliaclV isthe earliest example of thistype of machine. Each

processing element (containing an arithmetic unit) of thellliac
|V was connected to four othersto form atwo-dimensional

array (torus).

* A modern exampleisthe NVIDIA GPU.

52 of 53

Flynn’s Taxonomy

* Michaeda Flynn published a paper in 1972 in which he picked

two char acteristics of computersand tried all four possible
combinations. Two stuck in everybody’s mind, and the others
didn’t:

¢ SISD: Singlelnstruction, Single Data. Conventional Von
Neumann computers.

* MIMD: Multiple I nstruction, Multiple Data. M ulticomputers
and multiprocessor s.

e SIMD: Singlelnstruction, Multiple Data. Array processors.

* MISD: Multiplelnstruction, Single Data. Not used and
per haps not meaningful.

53 of 53

	Memory Hierarchy and Cache Memories
	Programming for Locality
	The Von Neumann Computational Model
	Multicomputers
	Shared-Memory Multiprocessors
	Other Forms of Parallelism
	Flynn’s Taxonomy
	Performance Issues in Multicomputers
	Origins
	Performance
	Von Neuman machines in the Textbook (1/2)
	Measuring Performance (1/2)
	Measuring Performance (2/2)
	Example: Intel Core i7 (1/2)
	Moore’s Law (1/4)
	Pipelining (1/3)
	Pipelining (2/3)
	Software pilelining example
	Superscalarity
	SIMD

