
1 of 53

2. Machine Organization



2 of 53

Origins

Charles Babbage in the 19th Century

Turing Machine

Early 20th Century machines  

[see http://en.wikipedia.org/wiki/Harvard_Mark_I]


http://en.wikipedia.org/wiki/Harvard_Mark_I

http://en.wikipedia.org/wiki/Harvard_Mark_I 


3 of 53

odel

g. Benjamin 

rinceton) 
40s.

w this model. It 

I/O
The Von Neumann Computational M

[Almasi and Gottlieb: Highly Parallel Computin
Cummings, 1988.]

• IAS ( Institute for Advanced Study (IAS), in P
Designed by John Von Neumann in the late 19

• All widely used “conventional” machines follo
is represented next:

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL



4 of 53

For an instruction to be executed, there are several steps that 
must be performed. For example:
1. Instruction Fetch and decode (IF). Bring the instruction from 

memory into the control unit and identify the type of 
instruction.

2. Read data (RD). Read data from memory.
3. Execution (EX). Execute operation.
4. Write Back (WB). Write the results back.



5 of 53

h as “add the 
result in that 

 and data of a 

on after another 
essor, and 
emory and 
The machine’s essential features are:
1. A processor that performs instructions suc

contents of these two registers and put the 
register”

2. A memory that stores both the instructions
program in cells having unique addresses.

3. A control scheme that fetches one instructi
from the memory for execution by the proc
shuttles data one word at a time between m
processor.



6 of 53

ok (1/2)
Von Neuman machines in the Textbo



7 of 53

ok (2/2)
Von Neuman machines in the Textbo



8 of 53

Example: Intel Core i7 (1/2) 



9 of 53

Example: Intel Core i7 (2/2)



10 of 53

Performance

Floating Point operations per second (Flops/second)
Name FLOPS
yottaFLOPS 1024

zettaFLOPS 1021

exaFLOPS 1018

petaFLOPS 1015

teraFLOPS 1012

gigaFLOPS 109

megaFLOPS 106

kiloFLOPS 103

Memory Bandwidth (Bytes/sec; gigaBytes/sec, megaBytes/sec)



11 of 53

Measuring Performance (1/2)



12 of 53

Measuring Performance (2/2)



13 of 53

Moore’s Law (1/4)

From Wikipedia:

The law is named after Intel co-founder Gordon E. Moore, who 
described the trend in his 1965 paper. The paper noted that the 
number of components in integrated circuits had doubled every year 
from the invention of the integrated circuit in 1958 until 1965 and 
predicted that the trend would continue "for at least ten years".

The law does not say that microprocessor performance or clock 
speed doubles every two years 

Nevertheless, clock speed did in fact double every two years from 
roughy 1975 to 2005, but has now flattened at about 3 GHz due to 
limitations on power dissipation.



14 of 53

Moore’s Law (2/4)

Figure from Moore’s 1965 paper 



15 of 53

Moore’s Law (3/4) - Implications



16 of 53

Moore’s Law (4/4) - Performance Enhancements



17 of 53

Pipelining (1/3)



18 of 53

Pipelining (2/3)

Example: A(:)=B(:)*C(:)



19 of 53

Pipelining (2/3)



20 of 53

Software pilelining example

do i=1,N
A(i) = s * A(i)

enddo

loop: load A(i)
mult A(i) = A(i) * s
store A(i)
i = i + 1
branch -> loop

loop: load A(i+6)
mult A(i+2) = A(i+2) * s
store A(i)
i = i + 1
branch -> loop

translationtranslation to lower level language

software pipelining



21 of 53

ld
A(1)

mul
s

st
A(1)

ld
A(2)

mul
s

st
A(2)

ld
A(3)

mul
s

st
A(3)

ld
A(4)

mul
s

st
A(4)

ld
A(5)

mul
s

st
A(5)

ld
A(6)

mul
s

st
A(6)

ld
A(7)

mul
s

st
A(7)

ld
A(8)

mul
s

st
A(8)

ld
A(9)

mul
s

st
A(9)

Assume:

• Load pipeline 4 stages

• Multiply and store a single 
step each

Loads start at each step to 
keep pipeline busy.



22 of 53

ld
A(1)

mul
s

st
A(1)

ld
A(2)

mul
s

st
A(2)

ld
A(3)

mul
s

st
A(3)

ld
A(4)

mul
s

st
A(4)

ld
A(5)

mul
s

st
A(5)

ld
A(6)

mul
s

st
A(6)

ld
A(7)

mul
s

st
A(7)

ld
A(8)

mul
s

st
A(8)

ld
A(9)

mul
s

st
A(9)

ld A(1)



23 of 53

ld
A(1)

mul
s

st
A(1)

ld
A(2)

mul
s

st
A(2)

ld
A(3)

mul
s

st
A(3)

ld
A(4)

mul
s

st
A(4)

ld
A(5)

mul
s

st
A(5)

ld
A(6)

mul
s

st
A(6)

ld
A(7)

mul
s

st
A(7)

ld
A(8)

mul
s

st
A(8)

ld
A(9)

mul
s

st
A(9)

ld A(1)
ld A(2)



24 of 53

ld
A(1)

mul
s

st
A(1)

ld
A(2)

mul
s

st
A(2)

ld
A(3)

mul
s

st
A(3)

ld
A(4)

mul
s

st
A(4)

ld
A(5)

mul
s

st
A(5)

ld
A(6)

mul
s

st
A(6)

ld
A(7)

mul
s

st
A(7)

ld
A(8)

mul
s

st
A(8)

ld
A(9)

mul
s

st
A(9)

ld A(1)
ld A(2)
ld A(3)



25 of 53

ld
A(1)

mul
s

st
A(1)

ld
A(2)

mul
s

st
A(2)

ld
A(3)

mul
s

st
A(3)

ld
A(4)

mul
s

st
A(4)

ld
A(5)

mul
s

st
A(5)

ld
A(6)

mul
s

st
A(6)

ld
A(7)

mul
s

st
A(7)

ld
A(8)

mul
s

st
A(8)

ld
A(9)

mul
s

st
A(9)

ld A(1)
ld A(2)
ld A(3)
ld A(4)



26 of 53

ld
A(1)

mul
s

st
A(1)

ld
A(2)

mul
s

st
A(2)

ld
A(3)

mul
s

st
A(3)

ld
A(4)

mul
s

st
A(4)

ld
A(5)

mul
s

st
A(5)

ld
A(6)

mul
s

st
A(6)

ld
A(7)

mul
s

st
A(7)

ld
A(8)

mul
s

st
A(8)

ld
A(9)

mul
s

st
A(9)

ld A(1)
ld A(2)
ld A(3)
ld A(4)
mul s
ld A(5)



27 of 53

ld
A(1)

mul
s

st
A(1)

ld
A(2)

mul
s

st
A(2)

ld
A(3)

mul
s

st
A(3)

ld
A(4)

mul
s

st
A(4)

ld
A(5)

mul
s

st
A(5)

ld
A(6)

mul
s

st
A(6)

ld
A(7)

mul
s

st
A(7)

ld
A(8)

mul
s

st
A(8)

ld
A(9)

mul
s

st
A(9)

ld A(1)
ld A(2)
ld A(3)
ld A(4)
mul s
ld A(5)
st A(1)
mul s
ld A(6)



28 of 53

ld
A(1)

mul
s

st
A(1)

ld
A(2)

mul
s

st
A(2)

ld
A(3)

mul
s

st
A(3)

ld
A(4)

mul
s

st
A(4)

ld
A(5)

mul
s

st
A(5)

ld
A(6)

mul
s

st
A(6)

ld
A(7)

mul
s

st
A(7)

ld
A(8)

mul
s

st
A(8)

ld
A(9)

mul
s

st
A(9)

ld A(1)
ld A(2)
ld A(3)
ld A(4)
mul s
ld A(5)
st A(1)
mul s
ld A(6)
st A(2)
mul s
ld A(7)



29 of 53

ld
A(1)

mul
s

st
A(1)

ld
A(2)

mul
s

st
A(2)

ld
A(3)

mul
s

st
A(3)

ld
A(4)

mul
s

st
A(4)

ld
A(5)

mul
s

st
A(5)

ld
A(6)

mul
s

st
A(6)

ld
A(7)

mul
s

st
A(7)

ld
A(8)

mul
s

st
A(8)

ld
A(9)

mul
s

st
A(9)

ld A(1)
ld A(2)
ld A(3)
ld A(4)
mul s
ld A(5)
st A(1)
mul s
ld A(6)
st A(2)
mul s
ld A(7)
st A(3)
mul s
ld A(8)



30 of 53

ld
A(1)

mul
s

st
A(1)

ld
A(2)

mul
s

st
A(2)

ld
A(3)

mul
s

st
A(3)

ld
A(4)

mul
s

st
A(4)

ld
A(5)

mul
s

st
A(5)

ld
A(6)

mul
s

st
A(6)

ld
A(7)

mul
s

st
A(7)

ld
A(8)

mul
s

st
A(8)

ld
A(9)

mul
s

st
A(9)

ld A(1)
ld A(2)
ld A(3)
ld A(4)
mul s
ld A(5)
st A(1)
mul s
ld A(6)
st A(2)
mul s
ld A(7)
st A(3)
mul s
ld A(8)

st A(i)
mul s (byA(i+1))
ld A(i+5)

pattern repeats:



31 of 53

Superscalarity

• Multiple instructions can be fetched and decoded concurrently 
(3–6 nowadays).

• Address and other integer calculations are performed in 
multiple integer (add, mult, shift, mask) units (2–6). This is 
closely related to the previous point, because feeding those 
units requires code execution.

• Multiple floating-point pipelines can run in parallel. Often 
there are one or two combined multiply-add pipes that 
perform a=b+c*d with a throughput of one each.

• Caches are fast enough to sustain more than one load or store 
operation per cycle, and the number of available execution 
units for loads and stores reflects that (2–4).



32 of 53

SIMD

It means: SINGLE Instruction/Multiple Data (see below)

The main idea is that there is asingle control unitl with the ability 
to control mutiple identical operations with each instruction.

The book does not mention it, but the most famous and 
influential SIMD machine is Illiac IV (U of I ca. 1960s)

Today, it can be found in GPGPUs and microporcessor vector 
extensions (SSE[Intel], AltiVec[IBM],...)



33 of 53

ories

al locality:

 a data items or 
 in the near term. 
a items or 
ta items or 

mory components 
xpensive per bit .

I/O Devices

MEMORY
Memory Hierarchy and Cache Mem

• Programs tend to exhibit temporal and spati

Temporal locality: Once programs access
instruction, they tend to access them again

Spatial locality: Once programs access a dat
instruction, they tend to access nearby da
instruction in the near term.

• Memory is organized in a hierarchy.

As we move farther away from the CPU, me
become (1) slower, (2) larger, and (3) less e

ca
ch

e 

Main 

PROCESSOR
ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL



34 of 53

rchy outside the 

 in the cache, we 
ce Miss Ratio (MR) 
 of references that 

ain memory:

he access time

atio (β)
• Cache is the first level of the memory hiera
CPU.

• Hit and Miss ratios: When the data is found
have a cache hit, otherwise it is a miss. Hen
and Hit Ratio (HR)(= 1-MR) are the fraction
hit or miss respectively.

• Average access time: If all the data fits in m

average memory access time = 
MR * main memory access time + HR * cac

• In the textbook 

1. hit ratio (HR) is called cache reuse r
2. main memory access time is Tm 
3. cache access time is Tc=Tm/τ



35 of 53

• Cache line: When there is a cache miss, a fixed size block of 
consecutive data elements, or line, is copied from main 
memory to the cache. Typical cache line size is 4-128 bytes.

• Main memory can be seen as a sequence of lines, some of 
which can have a copy in the cache. 

• Placement of lines in the cache: Caches are divided into sets of 
lines. Cache lines from memory can be mapped to one and 
only one set. The set is usually chosen by bit selection:                         
line address MOD number of sets in the cache.

> If there is a single set, the cache is said to be fully 
associative.

> If there are as many sets as lines in the cache, the cache 
is said to be direct mapped.

> Otherwise, if the are two or more sets, each containing 
exactly n elements, the cache is said to be n-way   



36 of 53

Set associative

set 0 set 1 set 2 set 3
•

Fully Direct mapped 



37 of 53

d the cache is 
f the cache lines 

t are the lines in 
 In the case of 
ate for 

ndomly 

ine that has been 

e that has been 
ed.

n memory and 
tent.
 the line is 
• Replacement strategy: When a miss occurs an
fully associative or n-way set associative, one o
must be replaced. Candidates for replacemen
the set where the incoming line can be placed.
direct mapped caches, there is only one candid
replacement.
> Random: candidate line to be replaced is ra

selected.
> Least recently used (LRU): The candidate l

unused for the longest time is replaced.
> First in, First out(FIFO): The candidate lin

in the cache for the longest time is replac

• Writes are processed in one of two ways:

> Write through: Data is written both to mai
cache. Memory and cache are kept consis

> Write back: memory is updated only when
replaced.



38 of 53

Programming for Locality

• Program locality was defined above as a tendency towards 
repetitive accesses. We say that program locality increases 
when this tendency becomes stronger by having repetitions 
happening on the average within shorter time spans. 

• Program locality can be controlled by the programmer to a 
certain extent by reorganizing computations. 

• Consider the following loop where f(i,j) is any function of i 
and j:

for i=1:n
for j=1:n

A(j)=A(j)+f(i,j)
end

end

The elements of A are re-referenced every n iteration of the 
inner loop. So, once an item has been referenced, the 
average “time” between repetitions is n iterations. 



39 of 53

• If the loop headers are interchanged:
for j=1:n

for i=1:n
A(j)=A(j)+f(i,j)

end
end

we obtain a semantically equivalent loop, but now the “time” 
between repetitions is reduced to one iteration.

• we can say that the new loop has better locality.

• A similar transformation can be applied to straight line code 
by “clustering” uses and definitions of variables:

a=...
b=...
c=...
...
...=a
...=b

a=...
...=a
b=...
...=b
c=...
...



40 of 53

• The great benefit of incresing locality is that it tends to reduce 
the time to access memory.

• In the case of registers, allocation is required. 

Typically done by compiler or, less often, manually by the 
programmer.

Programs with better locality tend to require fewer register 
spills and loads.

• In the case of caches and paged main memory, the program 
will tend to have fewer misses and therefore fewer accesses to 
lower levels of the hierarchy.



41 of 53

tion of 

 communicate 
k.

: clusters and 
e quite similar, 
 and its 
Multicomputers

• A natural way to get parallelism given a collec
conventional computers is to connect them:

• Each machine can proceed independently and
with the others via the interconnection networ

• There are two main classes of multicomputers
distributed-memory multiprocessors. They ar
but the latter is designed as a single computer

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

Interconnection Network



42 of 53

hile clusters are 

 of 
 I/O) used as a 

rocessor need 

ervers

MEMORY
holds instructions and 
data

PROCESSOR
ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

PROCESSOR
ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

PROCESSOR
ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL
components are typically not sold separately w
made out of off-the-shelf components. 
Furthermore, a cluster consists of a collection

interconnected whole computers (including
single, unified computing resource.

Not all nodes of a distributed memory multip
have complete I/O resources. 

• An example of cluster is a web server

The net

dispatcherrouter

request

S

MEMORY
holds instructions and 
data

PROCESSOR
ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL



43 of 53

 Fermilab, 
 and IBM 
celerator events. 
 to do with 

ns a sequential 
 using several 
 simultaneously.

 high-end 
• Another example was a workstation cluster at
which consisted of about 400 Silicon Graphics
workstations. The system is used to analyze ac
Analyzing any one of those events has nothing
analyzing any of the others. Each machine ru
program that analyzes one event at a time. By
machines it is possible to analyze many events

• Most important for parallel programming are
clusters that pervade the Top500  



44 of 53

ers

tform.

ime.

essages. The 
ation, the 
the startup cost, 

e number of 
Performance Issues in Multicomput

• Here we have our first parallel computing pla

• Performance will depend on communication t

• Topically, multicomputers communicate via m
time for a message to go from source to destin
latency, is modeled by the formula where σ is 

τ is the transfer time per data item, and n is th
data items to be sent.

•

σ nτ+



45 of 53

ency can also be 

receiver overhead 

e processor to 
 network.
he message to 

 the message to 
arrived
sor to pull the 
.

ponents from all 
.

• The time for a message or communication lat
represented by the formula:
sender overhead+time of flight+transmission time+

> sender overhead is the time consumed by th
inject the message into the interconnection

> time of flight is the time for the first bit of t
arrive at the receiver

> transmission time is the time for the rest of
arrive at the receiver after the first bit has 

> receiver overhead is the time for the proces
message from the interconnection network

• The τ of the above formula could contain com
terms of this formula except for time of flight



46 of 53

e reduced if the 
cussed later, the 
essages since the 
nse of 

ommunication is 
nication. This is 
hiding, the 
d as early as 
s possible. 
• Communication costs per item transferred ar
length of the message increases. As will be dis
problem is not simply to increase the size of m
program may attain such increase at the expe
parallelism. 

• Communication costs can also be reduced if c
overlapped with computation or other commu
called latency hiding. To benefit from latency 
program must be organized so that data is sen
possible and check for its availability as late a



47 of 53

n address space 
stem. An 

 location in all 

ngle, centralized 
Shared-Memory Multiprocessors

• In shared-memory multiprocessors, there is a
that can be accessed by all processors in the sy
address within that space represents the same
processors.

• The shared address space does not require a si
memory module.



48 of 53

rocessor is the 
ric we mean that 
ilities. Therefore 
qual access to 

 every I/O device 
iew of each 

e, hence the 

I/O

LAN Disks

Interconnect

Some levels of
cache could be
shared.
• The simplest form of a shared-memory multip
symmetric multiprocessor (SMP). By symmet
each of the processors has exactly the same ab
any processor can do anything: they all have e
every location in memory; they all can control
equally well, etc. In effect, from the point of v
processor the rest of the machine looks the sam
term symmetric

Rest of MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

Cache Cache Cache Cache



49 of 53

emory. These 
ccesses) 
cess to local 
g the memory 
memory.

ation and 
usively by write 
ace.

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

cache
• An alternative design are distributed shared-m
are also called NUMA (nonuniform memory a
machines.  These designs reduce the cost of ac
memory and are a cost-effective way of scalin
bandwidth if most of the accesses are to local 

• In shared-memory multiprocessors communic
synchronization is typically implemented excl
and read operations on the shared address sp

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

Interconnection Network

cache

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

cache

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

cache

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

cache



50 of 53

arallelism that 
ith the coarse 
iprocessors.

ic unit.

f this type of 
Other Forms of Parallelism

• As discussed above, there are other forms of p
are widely used today. These usually coexist w
grain parallelism of multicomputers and mult

• Pipelining of the control unit and/or arithmet

• Multiple functional units

• Most microprocessors today take advantage o
parallelism. 

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

registers

Instruction counter

CONTROL



51 of 53

ors are an 
 The idea is that 
ns that are 
sually exploited 

-level language 
ontrol this type 

IALU

BRANCH
• VLIW (Very Long Instruction Word) process
important class of multifunctional processors.
each instruction may involve several operatio
performed simultaneously.This parallelism is u
by the compiler and not accessible to the high
programmer. However, the programmer can c
of parallelism in assembly language.   

Register File

Memory

LD/ST FADD FMUL

LD/ST FADD FMUL IALU
Instruction 

Word

Multifunction Processor (VLIW)



52 of 53

 machine. Each 
unit) of the Illiac 
-dimensional 

MEMORY
holds instructions and 
data

ARITHMETIC
UNIT

logic
registers
• Array processors. Multiple arithmetic units

• Illiac IV is the earliest example of this type of
processing element (containing an arithmetic 
IV was connected to four others to form a two
array  (torus).

• A modern example is the NVIDIA GPU.

MEMORY
holds instructions and 
data

PROCESSOR

ARITHMETIC
UNIT

logic
registers

Instruction counter

CONTROL

MEMORY
holds instructions and 
data

MEMORY
holds instructions and 
data

ARITHMETIC
UNIT

logic
registers

ARITHMETIC
UNIT

logic
registers



53 of 53

hich he picked 
 four possible 
, and the others 

tional Von 

ulticomputers 

ay processors.

 used and 
Flynn’s Taxonomy

• Michael Flynn published a paper in 1972 in w
two characteristics of computers and tried all
combinations. Two stuck in everybody’s mind
didn’t:

• SISD: Single Instruction, Single Data. Conven
Neumann computers.

• MIMD: Multiple Instruction, Multiple Data. M
and multiprocessors.

• SIMD: Single Instruction, Multiple Data. Arr

• MISD: Multiple Instruction, Single Data. Not
perhaps not meaningful.


	Memory Hierarchy and Cache Memories
	Programming for Locality
	The Von Neumann Computational Model
	Multicomputers
	Shared-Memory Multiprocessors
	Other Forms of Parallelism
	Flynn’s Taxonomy
	Performance Issues in Multicomputers
	Origins
	Performance
	Von Neuman machines in the Textbook (1/2)
	Measuring Performance (1/2)
	Measuring Performance (2/2)
	Example: Intel Core i7 (1/2)
	Moore’s Law (1/4)
	Pipelining (1/3)
	Pipelining (2/3)
	Software pilelining example
	Superscalarity
	SIMD

