
1 of 20

els
© 2006 David A. Padua

Parallel Programming Mod

2 of 20

aradigms. Most

 with real
© 2006 David A. Padua

• There are many different parallel programming p
are of academic interest only.

• We will present three paradigms that are popular
application programmers:

Shared-memory programming

Message-passing programming

Array programming

• We will start by introducing the notion of task

3 of 20

.

e programmer
h task. (There
ystem will time-
processor per
irtual machine”.)

h task may
at only the tasks

frequently to

ultiple Data)

ext in the context
© 2006 David A. Padua

Tasks

Tasks are a central concept in parallel programming

A task is a sequential program under execution. Th
may assume that there is a processor devoted to eac
may not be a physical processor, but the operating s
share the real processors to give the illusion of one
task. It is said that the operating system creates a “v

Parallel programs consist of two or more tasks. Eac
contain private data (local memory). That is, data th
can access.

There are two main programming approaches used
generate tasks:

1. Explicit spawning.

2. Programming in the SPMD (Single Program M
model.

The SPMD model will be discussed shortly.

We will illustrate the explicitly spawning strategy n
of shared-memory parallel programming.

4 of 20

ing

ple program

ctions, and a, b,
© 2006 David A. Padua

Shared-Memory Parallel Programm

To illustrate this model ,consider the following sim
read b,c,e,g
a=f1(b,c)
h=f2(e)
d=f3(h, g)
q=f4(d,a)
print q
end

where f1, f2, f3, and f4 are time-consuming fun
c, d, e, p, and q are data structures.

5 of 20
© 2006 David A. Padua

A simple parallel program for this is:

read b,c,e,g
start_task sub(e,g,d)
a=f1(b,c)
wait_for_all_tasks_to_complete
q=f4(d,a)
print q
end

subroutine sub(e,g,d)
local h
h=f2(e)
d=f3(h, g)
end sub

6 of 20

n a second task is
broutine sub.

ceed in parallel.

ete before
cessary to
.

ared by the two
ed by both tasks.
© 2006 David A. Padua

The program starts as a single task program and the
initiated. The second task proceeds by executing su

The computations of variable a and variable d pro

The original task waits for the second task to compl
proceeding with the computation of q. Waiting is ne
guarantee that d has been computed before it is used

In this program, all variables except for h can be sh
tasks. In fact, only variables e, g, and d are access

7 of 20

opy of h will be
d.

, and each will
© 2006 David A. Padua

Notice that because h is private to the task, a new c
created every time start_task sub is execute

Consider the following program:
read b,c,e,g
start_task sub(b,c,a)
call sub(e,g,d)
wait_for_all_tasks_to_complete
q=f4(d,a)
print q
end

subroutine sub(e,g,d)
local h
h=f2(e)
d=f3(h, g)
end sub

Two copies of sub will be executing simultaneously
have its own copy of h.

8 of 20

ivate. Variable
to and from

emory code
© 2006 David A. Padua

Channels and Message Passing

In message passing programming, all variables are pr
are shared by explicitly “writing” and “reading” data
tasks.

The following code is equivalent to the first shared-m
presented above:
read b,c,e,g
start_task sub()
send x(e,g)
a=f1(b,c)
receive y(d)
q=f4(d,a)
print q
end

subroutine sub()
local m,n,r,h
receive x(m,n)
h=f2(m)
r=f3(h, n)
send y(r)
end sub

9 of 20

end operation is

ecution of the

s, the values of
sk to the created
te direction.

ve y(d)

 names of the
ation.

 processor, all
entioned above.

sing:
© 2006 David A. Padua

Here, x and y are communication channels. The s
asynchronous: it completes immediately.

The receive operation is synchronous: it halts ex
task until the necessary data is available.

Thus, thanks to the send and receive operation
variables e and g are tranferred from the original ta
task, and the value of d is transferred in the opposi

Notice that no wait operation is needed. The recei
operation does the necessary synchronization.

An alternative approach, message passing, uses the
destination tasks rather than channels for communic

Usually, message passing systems start one task per
executing the same code. This is the SPMD model m
It is the most popular model today.

The previous program in SPMD and message pas

10 of 20

 more detail
© 2006 David A. Padua

if my_proc().eq. 0 then
read b,c,e,g
send (e,g) to 1
a=f1(b,c)
receive (d) from 1
q=f4(d,a)
print q

else /* my_proc() == 1 */
receive (m,n) from 0
h=f2(m)
r=f3(h, n)
send (r) to 0

end if

Later in the semester we will study this approach in

11 of 20

ry programming

ent, such as for or
 says “just get all
ssors if possible.”

be specified or
omain of the
© 2006 David A. Padua

Parallel loops

One of the most popuar constructs for shared-memo
is the parallel loop.

Parallel loops are just like any usual iterative statem
do, except that it doesn’t actually iterate. Instead, it
these things done, in any order, using several proce

The number of processors available to the job may
limited in some way, but that’s usually outside the d
parallel loop construct.

An example of a parallel loop is:

c = sin (d)
parallel do i=1 to 30

a(i) = b(i) + c
end parallel do
e = a(20)+ a(15)

12 of 20

mple, the
er into something

red by the three
.

© 2006 David A. Padua

Parallel loops are implemented using tasks. For exa
previous program could be translated by the compil
similar to the following program:

c = sin (d)
start_task sub(a,b,c,1,10)
start_task sub(a,b,c,11,20)
call sub(a,b,c,21,30)
wait_for_all_tasks_to_complete
e = a(20)+ a(15)
...

subroutine sub(a,b,c,k,l)
...
for i=k to l

a(i) = b(i) + c
end for

end sub

Notice that, in this program, arrays a and b are sha
processors cooperating in the execution of the loop

13 of 20

ment of the

ler could generate

,i)

pty,i)
© 2006 David A. Padua

This program assigns to each processor a fixed seg
iteration space. This is called static scheduling.

Scheduling also could be dynamic. Thus, the compi
the following code instead:
c = sin (d)
start_task sub(a,b,c)
start_task sub(a,b,c)
call sub(a,b,c)
wait_for_all_tasks_to_complete
e = a(20)+ a(15)
...

subroutine sub(a,b,c)
logical empty

...
call get_another_iteration(empty
while .not. empty do

a(i) = b(i) + c
call get_another_iteration(em

end while
end sub

14 of 20

utine accesses a
 them, and
een assigned, and
rue. in variable

ration()
ion:

,i,j)

pty,i,j)
© 2006 David A. Padua

Here, the get_another_iteration() subro
pool containing all n iteration numbers , gets one of
removes it from the pool. When all iterations have b
therefore the pool is empty, the function returns .t
empty.

A third alternative is to have get_another_ite
return a range of iterations instead of a single iterat
subroutine sub(a,b,c,k,l)
logical empty

...
call get_another_iteration(empty
while .not. empty do

for k=i to j
a(k) = b(k) + c

end for
call get_another_iteration(em

end while
end sub

15 of 20

ons involving
e program or

 the execution of
llel loops). The
he master task.
es the implicit

s illustrated next:
© 2006 David A. Padua

SPMD model and parallel loops

Starting a task is usually very time consuming.

For that reason, current implementations of extensi
parallel loops start a few tasks at the beginning of th
when the first parallel loop is to be executed.

These tasks, called implicit tasks, will be idle during
the sequential components (that is, outside the para
task that starts exectuiton of the program is called t
When the master task finds a parallel loop, it awak
tasks who join in the execution of the parallel loop.

An asternative strategy is to use the SPMD model a

16 of 20
© 2006 David A. Padua

c = sin (d)
i=my_proc()*10
call sub(a,b,c,i+1,i+10)
call barrier()
if my_proc() .eq. 0 then

e = a(20)+ a(15)
end if
...

subroutine sub(a,b,c,k,l)
...
for i=k to l

a(i) = b(i) + c
end for

end sub

17 of 20

 compact form

:

eth Iverson’s
© 2006 David A. Padua

Array Programming

In these languages, array operations are written in a
that often makes programs more readable.

Consider the loop:
s=0
do i=1,n

a(i)=b(i)+c(i)
s=s+a(i)

end do

It can be written (in Fortran 90 notation) as follows

a(1:n) = b(1:n) +c(1:n)
s=sum(a(1:n))

Perhaps the most important array language is Kenn
APL, developed ca. 1960.

A popular array language today is MATLAB.

18 of 20

arallel computing
press parallelism
allel.

olved in a vector
uction functions,

el but in a less

 using almost any
ters.
© 2006 David A. Padua

Although these languages were not developed for p
but rather for expressiveness, they can be used to ex
since array operations can be easily executed in par

Thus, all the arithmetic operations (+, -, * /, **) inv
expression can be performed in parallel. Intrinsic red
such as sum above, also can be performed in parall
obvious manner.

Vector operations can be easily executed in parallel
form of parallelism, from pipelining to multicompu

19 of 20

on shared-
© 2006 David A. Padua

Vector programs are easily translated for execution
memory machines. The code segment:
c = sin(d)
a(1:30)=b(2:31) + c
e=a(20)+a(15)

is equivalent to the following code segement:
c = sin (d)
parallel do i=1 to 30

a(i) = b(i+1) + c
end parallel do
e = a(20)+ a(15)

20 of 20

 to transform
w would you
© 2006 David A. Padua

Going in the other direction, it is not always simple
forall loops into vector operations. For example, ho
transform the following loop into vector form?

parallel do i=1 to n
if c(i) .eq. 1 then

while a(i) .gt. eps do
a(i) = a(i) - a(i) / c

end while
else

while a(i) .lt. upper do
a(i) = a(i) + a(i) * d

end while
end if

end parallel do

	Additional Foils Chapter 3 : Parallel Programming Models
	Tasks
	Shared-Memory Parallel Programming
	Channels and Message Passing
	Parallel loops
	SPMD model and parallel loops
	Array Programming

