Parallel Programming M odels

© 2006 David A. Padua 1 of 20

* There are many different parallel programming paradigms. M ost
are of academic interest only.

* We will present three paradigms that are popular with real
application programmers:

Shared-memory programming
M essage-passing programming
Array programming

* We will start by introducing the notion of task

© 2006 David A. Padua 2 of 20

Tasks

Tasks are a central concept in parallel programming.

A task is a seguential program under execution. The programmer
may assume that there is a processor devoted to each task. (There
may not be a physical processor, but the operating system will time-
share the real processorsto give theillusion of one processor per
task. It is said that the operating system creates a “virtual machine”.)

Parallel programs consist of two or more tasks. Each task may
contain private data (local memory). That is, datathat only the tasks
can access.

There are two main programming approaches used frequently to
generate tasks:
1. Explicit spawning.
2. Programming in the SPMD (Single Program Multiple Data)
model.
The SPMD model will be discussed shortly.

We will illustrate the explicitly spawning strategy next in the context
of shared-memory parallel programming.

© 2006 David A. Padua 3 of 20

Shared-Memory Parallel Programming

To illustrate this model ,consider the following simple program
read b,c,e,g

a=f1 (b, c)

h=f2 (e)

d=£3 (h, g)

g=£f4 (d, a)

print g

end

where £1, £2, £3, and £4 are time-consuming functions, and a, b,
c, d, e, p, and g are data structures.

© 2006 David A. Padua 4 of 20

A simple parallel program for thisis:

read b,c,e,g

start task sub(e,g,d)

a=f1 (b, c)

walt for all tasks to complete
g=£f4 (d, a)

print g

end

subroutine sub (e, g,d)
local h

h=f2 (e)

d=£f3 (h, g)

end sub

© 2006 David A. Padua 5 of 20

The program starts as a single task program and then a second task is
initiated. The second task proceeds by executing subroutine sub.

The computations of variable a and variable d proceed in parallel.

The original task waits for the second task to compl ete before
proceeding with the computation of g. Waiting is necessary to
guarantee that d has been computed before it is used.

In this program, all variables except for h can be shared by the two
tasks. In fact, only variables e, g, and d are accessed by both tasks.

© 2006 David A. Padua 6 of 20

Notice that because h is private to the task, a new copy of h will be
created every time start task sub isexecuted.

Consider the following program:

read b,c,e,g

start task sub(b,c,a)

call sub(e,g,d)

walt for all tasks to complete
g=£f4 (d, a)

print g

end

subroutine sub (e, g,d)
local h

h=f2 (e)

d=f3 (h, g)

end sub

Two copies of sub will be executing simultaneously, and each will
have its own copy of h.

© 2006 David A. Padua 7 of 20

Channels and M essage Passing

| N message passing programming, all variables are private. Variable

are shared by explicitly “writing” and “reading” data to and from

tasks.

The following code is equivalent to the first shared-memory code

presented above:

read b,c,e,g
start task sub ()
send x (e, qg)

a=fl1 (b, c)
receive vy (d4d)
g=£f4 (d, a)

print g

end

subroutine sub ()
local m,n,xr,h
receive x(m,n)
h=f2 (m)

r=f3 (h, n)

send vy (xr)

end sub

© 2006 David A. Padua

8 of 20

Here, x and vy are communication channels. The send operation is
asynchronous: it completes immediately.

The receive operation is synchronous: it halts execution of the
task until the necessary data is available.

Thus, thanksto the send and receive operations, the values of
variables e and g are tranferred from the original task to the created
task, and the value of d istransferred in the opposite direction.

Notice that no wait operation is needed. The receive v (d)
operation does the necessary synchronization.

An alternative approach, message passing, uses the names of the
destination tasks rather than channels for commmunication.

Usually, message passing systems start one task per processor, all
executing the same code. Thisisthe SPMD model mentioned above.
It isthe most popular model today.

The previous program in SPMD and message passing:.

© 2006 David A. Padua 9 of 20

if my proc() .eg. O then
read b,c,e,g
send (e,g) to 1
a=f1 (b, c)
receive (d) from 1

g=£f4 (d, a)
print g

else /* my proc() == 1 * /
receive (m,n) from O
h=f2 (m)

r=f3 (h, n)
send (r) to O
end if

L ater in the semester we will study this approach in more detail

© 2006 David A. Padua 10 of 20

Par allel loops

One of the most popuar constructs for shared-memory programming
Is the parallel 1oop.

Parallel loops arejust like any usual iterative statement, such asfor or
do, except that it doesn’t actually iterate. Instead, it says “just get all
these things done, in any order, using several processorsif possible.”

The number of processors available to the job may be specified or
limited in some way, but that’s usually outside the domain of the
parallel loop construct.

An example of aparallel loop is:

c = sin (d4d)
parallel do i=1 to 30
a(i) = b((i) + c

end parallel do
e = a(20)+ a(lsb)

© 2006 David A. Padua 11 of 20

Parallel 1oops are implemented using tasks. For example, the
previous program could be trandglated by the compiler into something
similar to the following program:

c = sin (4d)

start task sub(a,b,c,1,10)
start task sub(a,b,c,11,20)
call sub(a,b,c,21,30)

walt for all tasks to complete
e = a((20)+ a(lsb)

subroutine sub(a,b,c,k, 1)

for i=k to 1
a(i) = b(i) + c
end for
end sub

Notice that, in this program, arrays a and b are shared by the three
processors cooperating in the execution of the loop.

© 2006 David A. Padua 12 of 20

This program assigns to each processor afixed segment of the
iteration space. Thisis called static scheduling.

Scheduling also could be dynamic. Thus, the compiler could generate
the following code instead:

c = sin (4)

start task sub(a,b, c)

start task sub(a,b, c)

call sub(a,b, c)

walt for all tasks to complete

e = a(20)+ a(lsb)

subroutine sub (a, b, c)
logical empty

call get another iteration (empty, 1)
while .not. empty do
a(i) = b((i) + c
call get another iteration(empty, i)
end while
end sub

© 2006 David A. Padua 13 of 20

Here, theget another iteration () subroutine accessesa
pool containing all n iteration numbers , gets one of them, and
removesit from the pool. When all iterations have been assigned, and
therefore the pool is empty, the function returns . true . in variable
empty.

A third alternativeisto have get another iteration ()
return arange of iterations instead of a single iteration:
subroutine sub(a,b,c,k, 1)

logical empty

call get another iteration(empty,i,J)
while .not. empty do

for k=i to

a(k) = b((k) + c

end for

call get another iteration(empty,i,])
end while

end sub

© 2006 David A. Padua 14 of 20

SPM D mode and parallel loops

Starting atask isusually very time consuming.

For that reason, current implementations of extensions involving
parallel loops start afew tasks at the beginning of the program or
when the first parallel loop is to be executed.

These tasks, called implicit tasks, will be idle during the execution of
the sequential components (that is, outside the parallel loops). The
task that starts exectuiton of the program is called the master task.
When the master task finds a parallel loop, it awakesthe implicit
tasks who join in the execution of the parallel 1oop.

An asternative strategy is to use the SPMD model asillustrated next:

© 2006 David A. Padua 15 of 20

c = sin ((4d)

i=my proc () *10

call sub(a,b,c,i+1,1+10)

call barriexr ()

if my proc() .eg. 0 then
e = a((20)+ a(lsb)

end if

subroutine sub(a,b,c,k, 1)
for i=k to 1
a(i) = b(i) + c

end for
end sub

© 2006 David A. Padua 16 of 20

Array Programming

| n these languages, array operations are written in a compact form
that often makes programs more readabl e.

Consider the loop:

s=0

do i=1,n
a(i)=b (i) +c (i)
s=s+a (i)

end do

It can be written (in Fortran 90 notation) as follows:
a(l:n) = b(l:n) +c(l:n)
s=sum((a(l:n))

Perhaps the most important array language is Kenneth Iverson’s
APL, developed ca. 1960.

A popular array language today is MATLAB.

© 2006 David A. Padua 17 of 20

Although these languages were not developed for parallel computing
but rather for expressiveness, they can be used to express parallelism
since array operations can be easily executed in parallel.

Thus, all the arithmetic operations (+, -, * /, **) involved in avector
expression can be performed in parallel. Intrinsi c reduction functions,
such as sum above, also can be performed in parallel but in aless

obvious manner.

Vector operations can be easily executed in parallel using almost any
form of parallelism, from pipelining to multicomputers.

© 2006 David A. Padua 18 of 20

Vector programs are easily translated for execution on shared-
memory machines. The code segment:

c = sin (d)

a(l:30)=b(2:31) + c

e=a (20)+a (15)

IS equivalent to the following code segement:

c = sin (d4d)
parallel do i=1 to 30
a(i) = b((i+1l) + c

end parallel do
e = a(20)+ a(lsb)

© 2006 David A. Padua 19 of 20

Going in the other direction, it is not always simple to transform
forall loops into vector operations. For example, how would you

transform the following loop into vector form?

parallel do i=1 to n

if c(i) .eg. 1 then
while a(i) .gt. eps do
a(i) = a(i) - a(i) / c
end while
else
while a(i) .l1lt. upper do
a(i) = a(i) + a(i) * d
end while
end if

end parallel do

© 2006 David A. Padua 20 of 20

	Additional Foils Chapter 3 : Parallel Programming Models
	Tasks
	Shared-Memory Parallel Programming
	Channels and Message Passing
	Parallel loops
	SPMD model and parallel loops
	Array Programming

