Scheduling in OpenMP

Figure 6.2: Loop schedules in OpenMP. The example loop has 20 iterations and is executed by three threads (T0, T1, T2). The default chunksize for DYNAMIC and GUIDED is one. If a chunksize is specified, the last chunk may be shorter. Note that only the STATIC schedules guarantee that the distribution of chunks among threads stays the same from run to run.

Tasking in OpenMP

```
i integer i, N=1000000
2 type(object), dimension(N) :: p
    double precision :: r
3
4 ...
5 !$OMP PARALLEL PRIVATE(r, i)
6 !$OMP SINGLE
    do i=1,N
7
     call RANDOM_NUMBER(r)
8
      if(p(i)%weight > r) then
9
10 ! $OMP TASK
    ! i is automatically firstprivate
11
     ! p() is shared
12
     call do_work_with(p(i))
13
14 1SOMP END TASK
      endif
15
    enddo
16
17 1SOMP END SINGLE
18 !$OMP END PARALLEL
```

The Wavefront method

First consider a simple two dimensional Fortran 77 form of this method. That is, two dimensional loop nests with a single statement inside that assigns to a two dimensional array.

To illustrate this method we draw a graph of the iteration space of the loop. Each iteration will be a node in the graph. The graph will taked the form of a mesh with equal vertical and horizontal separation.

These nodes will be joined by three classes of arcs representing races (write-read, read-write, write-write). These arcs (which are called **dependences**) will always flow in the direction of execution in the original loop.

The idea is that a vector form can be obtained by finding a collection of parallel lines that are equidistant, are not parallel to any dependence arc, and pass through all the nodes in the graph.

```
For example, the loop
do i=1,n
    do j=1,n
        a(i,j)=a(i-1,j)+1
        end do
end do
```

can be represented by the following graph:

From the graph it is clear that for each i there is a vector operation in j.

A second example:

A more complicated case:

From the equations:

$$2 \le i \le n$$
$$2 \le k - i \le n$$
$$k = 4, 5, ..., 2n$$

We conclude that:

 $max(2, k-n) \le i \le min(n, k-2)$

Another complex example:

```
do i=2,n
    do j=2,n
        a(i,j)=a(i+1,j-1)+a(i-1,j)+a(i,j-1)
        end do
end do
```


From the equations:

$$4 \le 2i \le 2n$$
$$2 \le k - 2i \le n$$
$$k = 6, 5, \dots, 3n$$

We conclude that:

$$max\left(2, \left\lceil \frac{k-n}{2} \right\rceil\right) \leq i \leq min\left(n, \left\lfloor \frac{k-2}{2} \right\rfloor\right)$$

From where:

do k=6,3*n
 forall (i=max(2,(k-n+1)/2):min(n,(k-2)/2)) a(i,k-j)=...
end do

Listing 6.5: OpenMP implementation of the 2D Jacobi algorithm on an $N \times N$ lattice, with a convergence criterion added.

```
double precision, dimension(0:N+1,0:N+1,0:1) :: phi
1
   double precision :: maxdelta, eps
2
3 integer :: t0,t1
4 eps = 1.d-14
                       ! convergence threshold
s t0 = 0 ; t1 = 1
6 maxdelta = 2.d0*eps
7 do while (maxdelta.gt.eps)
      maxdelta = 0.d0
8
9 !$OMP PARALLEL DO REDUCTION(max:maxdelta)
      do k = 1, N
10
        do i = 1, N
11
            ! four flops, one store, four loads
12
           phi(i,k,t1) = ( phi(i+1,k,t0) + phi(i-1,k,t0)
13
                           + phi(i,k+1,t0) + phi(i,k-1,t0) ) * 0.25
14
           maxdelta = max(maxdelta, abs(phi(i, k, t1)-phi(i, k, t0)))
15
        enddo
16
      enddo
17
18 1SOMP END PARALLEL DO
19
      ! swap arrays
      i = t0 ; t0=t1 ; t1=i
20
    enddo
21
```

Listing 6.6: A straightforward implementation of the Gauss–Seidel algorithm in three dimensions. The highlighted references cause loop-carried dependencies.

```
1 double precision, parameter :: osth=1/6.d0
2 do it=1,itmax ! number of iterations (sweeps)
    ! not parallelizable right away
3
    do k=1, kmax
4
      do j=1, jmax
5
        do i=1, imax
6
          phi(i,j,k) = ( phi(i-1,j,k) + phi(i+1,j,k)
7
                        + phi(i, j-1, k) + phi(i, j+1, k)
8
                        + phi(i, j, k-1) + phi(i, j, k+1) ) * osth
9
        enddo
10
      enddo
11
    enddo
12
13 enddo
```


Figure 6.4: Pipeline parallel processing (PPP), a.k.a. wavefront parallelization, for the Gauss–Seidel algorithm in 3D (wind-up phase). In order to fulfill the dependency constraints of each stencil update, successive wavefronts $(W_1, W_2, ..., W_n)$ must be performed consecutively, but multiple threads can work in parallel on each individual wavefront. Up until the end of the wind-up phase, only a subset of all *t* threads can participate.

Figure 6.5: Wavefront parallelization for the Gauss–Seidel algorithm in 3D (full pipeline phase). All *t* threads participate. Wavefront W₇ is shown as an example.

Listing 6.7: The wavefront-parallel Gauss–Seidel algorithm in three dimensions. Loop-carried dependencies are still present, but threads can work in parallel.

```
1 !$OMP PARALLEL PRIVATE(k, j, i, jStart, jEnd, threadID)
    threadID=OMP GET THREAD NUM()
2
3 SOMP SINGLE
    numThreads=OMP GET NUM THREADS()
4
5 !$OMP END SINGLE
    jStart=jmax/numThreads+threadID
6
    jEnd=jStart+jmax/numThreads ! jmax is amultiple of numThreads
7
    do l=1,kmax+numThreads-1
8
     k=l-threadID
9
     if((k.ge.1).and.(k.le.kmax)) then
10
        do j=jStart, jEnd
                                 ! this is the actual parallel loop
11
          do i=1, iMax
12
             phi(i,j,k) = ( phi(i-1,j,k) + phi(i+1,j,k)
13
                          + phi(i, j-1, k) + phi(i, j+1, k)
14
                          + phi(i, j, k-1) + phi(i, j, k+1) ) * osth
15
           enddo
16
        enddo
17
      endif
18
19 SOMP BARRIER
    enddo
20
21 SOMP END PARALLEL
```