Scheduling in OpenMP

Iteration

; -
|:|TO
.T1
.T2

STATIC STATIC, 3 DYNAMIC[, 1] DYNAMIC,3 GUIDED[,1]

W o~ ;A WM

8.;-;.;.4.;.;..;_;_;.4
0 o0k WM =0

Figure 6.2: Loop schedules in OpenMP. The example loop has 20 iterations and is executed
by three threads (T0, T1, T2). The default chunksize for DYNAMIC and GUIDED is one. If a
chunksize is specified, the last chunk may be shorter. Note that only the STATIC schedules
guarantee that the distribution of chunks among threads stays the same from run to run.

1 of 14

Tasking in OpenMP

integer i,N=1000000
type (object), dimension(N) :: p
double precision :: r

LA & W& ko=

| SOMP PARALLEL PRIVATE(r, i)
« 150MP SINGLE

7 do i=1,N

g call RANDOM NUMEER (I)

4 if(p(i)%weight > r) then

w !'SOMP TASK

1 ! 1 is automatically firstprivate
12 ! p() is shared

13 call do work _with(p(i))

4 !50MP END TASK

15 endif

16 enddo

17 !50MP END SINGLE
18 !$OMP END PARALLEL

2 of 14

The Wavefront method

First consider a simple two dimensional Fortran 77 form of this
method. That is, two dimensional loop nests with a single
statement inside that assigns to a two dimensional array.

To illustrate this method we draw a graph of the iteration space
of the loop. Each iteration will be a node in the graph. The graph
will taked the form of a mesh with equal vertical and horizontal
separation.

These nodes will be joined by three classes of arcs representing
races (write-read, read-write, write-write). These arcs (which are
called dependences) will always flow in the direction of
execution in the original loop.

The idea is that a vector form can be obtained by finding a
collection of parallel lines that are equidistant, are not parallel to
any dependence arc, and pass through all the nodes in the
graph.

3 o0of 14

For example, the loop
do 1=1.,n
do jJ=1.,n
a(i,j)=a(ni-1,3)+1
end do
end do

can be represented by the following graph:

0=
o=
0=
o=
0=

4 of 14

From the graph it is clear that for each i there is a vector
operation in j.
do 1=1,n
a(r,1l:nN)=a(i-1,1:n)+1
end do

A second example:
do 1=1.,n
do j=1,n
a(i,j)=a(i,j-1+a(i+l,j+1)+b(i)+cQ)
end do
end do

Nv‘rite after read

rfead after write

5 of 14

Now for each j there is a vector operation

do j=1,n
a(l:n,pD=ad:n,j-DD+a:n+1,j+DD)+bCr1))+c(1:-n)

end do

A more complicated case:

do 1=2.,n
do jJ=2,n
a(i,j)=a(i,j-1H+aCi-1,3)
end do
end do
v Vg
) g,zl /2,’3; 2.4 02526
P V4
N 4/¢ }:{2,V,§,3 Y34Y3579736
1+i= ’
J ,’ y4r,§ Y43 V44V7V45 V4,6
¢—>0 >0 "o "o

i+j=5 ~ ¢

i+j=6"] ! S S |

6 of 14

From the equations:

2<i<n
2<k-i<n
k =4,5,...,2n

We conclude that:

max(2, k—-n)<i<min(n,k-2)

From where:
do k=4,2*n

Tforall (i=max2.,.k-n)-min(n,k-2)) a(r,k—-j)=._.

end do

7 of 14

Another complex example:

do 1=2.,n
do jJ=2.,n
a(r,pD=ai+l,j-D+aCi-1,p)+ai,j-1)
end do
end do
L~ 7
2i+j=6 > aba
2i+j=7 4 4,3 V4,4 V4,5 ¥V 4,6

—>eo >0

*4 +/ b

—>eo >0

8 of 14

From the equations:

4<2i<2n
2<k-2i<n
k =6,5,...,3n

We conclude that:
max(Z,P‘;”D sismin(n,r“_zp
2 2

From where:
do k=6,3*n

Tforall (i=max2,(k—-n+1)/2):min(n,(k-2)/72)) a(i ,k-j)=__.
end do

9 of 14

Listing 6.5: OpenMP implementation of the 2D Jacobi algorithm on an N x N lattice. with a

convergence criterion added.

O =] & LW o LW R s

=

double precision, dimension(0:N+1,0:N+1,0:1) :: phi
double precision :: maxdelta, eps
integer :: tO,t1
eps = 1.d-14 ! convergence threshold
t0=0; t1 =1
maxdelta = 2.d0+eps
do while (maxdelta.gt.eps)
maxdelta = 0.d0

!S0MP PARALLEL DO REDUCTION (max :maxdelta)

do k = 1,N
doi=1N
! four flops, one store, four loads

phifi,k,t1) = (phi(i+l,k,t0) + phi(i-1,k,t0)
+ phi(i,k+1,t0) + phi(i,k-1,t0)

)

+« 0.25

maxdelta = max (maxdelta,abs(phi(i,k,tl)-phi(i, k,t0)))

enddo
enddo

!30MP END PARALLEL DO

! swap arrays
i=1t0; t0=t1 ; t1=1i
enddo

10 of 14

Listing 6.6: A straightforward implementation of the Gauss—Seidel algorithm in three dimen-
sions. The highlighted references cause loop-carried dependencies.

1 double precision, parameter :: osth=1/6.d0

2 do it=1, itmax ! number of iterations (sweeps)

3 ! not parallelizable right away

4 do k=1, kmax

5 do j=1, jmax

6 do i=1, imax

7 phi(i, j,k) = (phi(i-1,3j,k) + phi(i+l, j,k)

£ + phi(i,j-1,k) + phi(i, j+1,k)

9 + phi(i, j,k-1) + phi(i, j,k+1)) + osth

10 enddo
i enddo
12 enddo

13 enddo

11 of 14

Figure 6.4: Pipeline parallel processing (PPP), a.k.a. wavefront parallelization, for the Gauss—
Seidel algorithm in 3D (wind-up phase). In order to fulfill the dependency constraints of each
stencil update, successive wavefronts (W ,W,.....W,) must be performed consecutively, but
multiple threads can work in parallel on each individual wavefront. Up until the end of the
wind-up phase, only a subset of all # threads can participate.

12 of 14

Figure 6.5: Wavefront parallelization for the Gauss—Seidel algorithm in 3D (full pipeline
phase). All ¢ threads participate. Wavefront W7 is shown as an example.

13 of 14

Listing 6.7: The wavefront-paralle] Gauss—Seidel algorithm in three dimensions. Loop-carried
dependencies are still present, but threads can work in parallel.

1 !'50MP PARALLEL PRIVATE (k,j, i, jStart, jEnd, threadID)

. threadID=0MF_GET_ THREAD NUM{(}

3 150MF EINGLE

4 numThreads=0MP_ GET _NUM_THREADS ()

5 !30MF END SINGLE

& jEtart=jmax,/mnumThreads+threadID

7 jEnd=jStart+jmax/numThreads ! jmax is amultiple of numThreads
3 do 1=1, kmax+numThreads-1

3 k=1-threadID

1o if((k.ge.l).and. (k.le.kmax)) then

i do j=jStart, jEnd ! this is the actual parallel loop
iz do i=1, iMax

12 phi(i,j,k) = (phi(i-1,3j,.k) + phi(i+l1, j, k)

14 + phi(i, j-1,k) + phi{i, j+1,k)

15 + phi(i, j,k-1) + phii{i, j,k+1) } = osth
I& enddo

17 enddo

iz endif

i ! $OMP BARRIER

0 enddo

!50MP END PARALLEL

(=]
-

14 of 14

