

OpenMP

(Part II)
1 of 39

Parallel loops are the most frequently used constructs for scientific
computing in the shared-memory programming model.

In this chapter we will discuss omp parallel loops.

We begin with the definition of race.
2 of 39

Races

We say that there is a race when there are two memory
references taking place in two different tasks such that
1. They are not ordered
2. They refer to the same memory location
3. One of them is a memory write (store).

For example, in the following code there is a race due to
the two accesses to a:
#pragma omp sections
 {
 #pragma omp section

{
...
a = x + 5;
...
}

#pragma omp section
{
...
y = a + 1;
...
}

}

3 of 39

Another example of a race is:
#pragma omp parallel

{
...
if (omp_get_thread_num()== 0) a=x+5;
...
if (omp_get_thread_num()== 1) a=y+1;
...

}

However, there is no race in the following code because the
two references to a are ordered by the barrier.

#pragma omp parallel
{
...
if (omp_get_thread_num()==0) a=x+5;
...
#pragma omp barrier
...
if (omp_get_thread_num()==1) a=y+1;
...
}

4 of 39

Yet another example of a race is:

#pragma omp parallel for
for (i=0; i<n; i++){

...
a = x[i] + 1;
...

}

Here, a is written in all iterations. There is a race if there
are at least two threads in the team executing this loop.
5 of 39

And another example is:

#pragma omp parallel for
for (i=1; i<n; i++){

...
a[i] = a[i-1] + 1;
...

}

Here, if at least two tasks cooperate in the execution of the
loop, some pair of consecutive (say iterations m and m+1)
iterations will be executed by different tasks.

Then, one of the iterations will write to an array element
(say a[m] in iteration m) and the other will read the same
element in the next iteration.
6 of 39

Sometimes it is desirable to write a parallel program with
races. But most often it is best to avoid races.

In particular, unintentional races may lead to difficult to
detect bugs.

Thus, if a has the value 1 and x the value 3 before the
following parallel section starts, y could be assigned either
2 or 9. This would be a bug if the programmer wanted y to
get the value 9. And the bug could be very difficult to
detect if, for example, y were to get the value 2 very
infrequently.
#pragma omp sections
 {
 #pragma omp section

{
...
a = x + 5;
...
}

#pragma omp section
{
...
y = a + 1;
...
}

}

7 of 39

Race-free parallel loops

Next, we present several forms of parallel loops. In each
case, a conventional (sequential) version of the loop will be
presented first.

This does not mean that parallel loops can be written only
by starting with a conventional loop. However, the most
important forms of parallel loops can be easily understood
when presented in the context of conventional loops.

The first form of parallel loop can be obtained quite
simply. A conventional loop can be transformed into
parallel form by just adding a parallel for directive if
the resulting parallel loop contains no races between any
pair of iterations.

An example is the loop
for (i=1; i<n; i++){

...
a[i] = b[i] + 1;
...

}

8 of 39

Notice that this loop computes the vector operation

a[1:n]=b[1:n]+1

More complex loops can also be directly transformed into parallel
form. For example:

for (i=1; i<n; i++)
if (c[i] == 1)

while (a[i] > eps)
a[i] = x[i] - x[i-1] / c;

else
while (a[i] < upper)

a[i] = x[i] + y[i+1] * d;

Notice that although consecutive iterations access the same
element of x, there is no race because both accesses are reads.
9 of 39

Privatization

Sometimes the transformation into parallel form requires
the identification of what data should be declared as
private.

For example, consider the following loop:
for (i=0; i<n; i++){

x = a[i]+1 ;
b[i] = x + 2 ;
c[i] = x * 2 ;

}

This loop would be fully parallel if it were not for x which
is stored and read in all iterations.

One way to avoid the race is to eliminate the assignment to
x by forward substituting a[i]+1:

for (i=0; i<n; i++){
b[i] = (a[i]+1) + 2
c[i] = (a[i]+1) * 2

}

10 of 39

 A simpler way is to declare x as private:
#pragma omp parallel for private(x)

for (i=0; i<n; i++){
x = a[i]+1;
b[i] = x + 2;
c[i] = x * 2;

}

In general, a scalar variable can be declared private if
1. It is always assigned before it is read in every iteration of the

loop, and
2. It is never used again, or it is reassigned before used again after

the loop completes.

There is a copy of each private variable for each thread
participating in the execution of the parallel for.

If x were declared inside the iteration as follows
for (i=0; i<n; i++){

float x;
x = a[i]+1;...

there would be a copy for each iteration
11 of 39

Sometimes it is necessary to privatize arrays. For example, the
loop

for (i=0; i<n; i++){
for (j=0; j<n; j++)

y[j] = a[i][j] + 1);
...
for (k=1; k<n-1; k++)

b[i][k] = y[k] * 2;
}

can be directly parallelized if vector y is declared private.

An array can be declared private if
1. No element of the array is read before it is assigned within the

same iteration of the loop.
2. Any array element used after the loop completed is reassigned

before it is read.
12 of 39

An important case arises when the variable to be privatized
is read after the loop completes without reassignment.

For example

for (i=0; i<n; i++){
x = a[i]+1;
b[i] = x + 2;
c[i] = x ** 2;

}

...=x;
13 of 39

One way to solve this problem is to “peel off” the last iteration of the
loop and then parallelize:

#pragma omp parallel for private(x)
for (i=0; i<n-1; i++){

x = a[i]+1;
b(i) = x + 2;
c(i) = x * 2;

}
x=a[n-1]+1;
b[n]=x+2;
c[n]=x+2;
14 of 39

An equivalent, but simpler approach is to declare x as
lastprivate.

#pragma omp parallel for lastprivate(x)
for (i=0; i<n; i++){

x = a[i]+1;
b[i] = x + 2;
c[i] = x * 2;

}

15 of 39

A similar situation arises when a private variable needs to
be initialized with values from before the loop starts
execution. Consider the loop:

for (i=0; i<n; i++){
for (j=0; j<n; j++){

a[j] = calc_a(j);
b[j] = calc_b(i,j);

}
for (j=0; j<n; j++){

x=a[j]-b[j];
y=b[j]+a[j];
c[i][j]=x*y;

}
}

To parallelize this for loop, x, y, a and b should be declared
private. However, in iteration i the value of a[i+1],
a[i+2],...,a[n] and of b[i+1], b[i+2],..., b[n]
are those assigned before the loop starts.
16 of 39

To account for this, a and b should be declared as
firstprivate.

#pragma omp parallel for private(j,x,y), firstprivate(a,b)
17 of 39

Induction variables

Induction variables appear often in scientific programs.
These are variables that assume the values of an arithmetic
sequence across the iterations of the loop:

For example, the loop

for (i=0; i<n; i++){
j += 2;
for (k=0; k<j; k++)

a[k][j] = b[k][j] + 1;
}

cannot be directly transformed into parallel form because
the satement j+=2 produces a race. And j cannot be
privatized because it is read before it is assigned.

However, it is usually easy to express induction veriables as
a function of the loop index. So, the previous loop can be
tranformed into:
18 of 39

for (i=0; i<n; i++){
m = 2*(i+1) + j;
for (k=0; k<m; k++)

a[k][m] = b[k][m] + 1;
}

In this last loop, m can be made private and the loop
directly tranformed into parallel form.

If the last value of variable j within the loop is used after
the loop completes, it is necessary to add the statement

j+=2*n;

immediately after the loop to set the variable j to its
correct value.
19 of 39

Most induction variables are quite simple, like the one in
the previous example. However, in some cases a more
involved formula is necessary to represent the induction
variable as a function of the loop index:

For example consider the loop:

for (i=0; i<n; i++)
for (j=0; j<m; j++){

k+=2;
a[k]=b[i][j]+1;

}

The only obstacle for the parallelization of loop i is the
induction variable k. Notice that no two iterations assign to
the same element of array a because k always increases
from one iteration to the next.
20 of 39

The formula for k is somewhat more involved than the
formula of the previos example, but still is relatively
simple:

#pragma omp parallel for private(j)
for (i=0; i<n; i++)

for (j=0; j<m; j++)
a[2*(m*i+j+1)+k]=b[i][j]+1;

k=2*n*m+k;

or

#pragma omp parallel for private(j,k)
for (i=0; i<n; i++){

k=2*m*i;
for (j=0; j<m; j++){

k+=2;
a[k]=b[i][j]+1;

}
}

21 of 39

As a final example, consider the loop:

for (i=0; i<n; i++){
j+=1;
a[j]= b[i]+1;
for (k=0; k<i+1; k++){

j+=1;
c[j]=d[i][k]+1;

}
}

Here, again, only the induction variable, j, causes
problems. But now the formulas are somewhat more
complex:

#pragma omp parallel for private(k)
for (i=0; i<n; i++)

a[(i+1)+i*(i+1)/2]= b[i]+1;
for (k=0; k<i+1; k++)

c[i+(i+1)*(i+2)/2+k]=d[i][k]+1;
j=n+n*(n+1)/2;
22 of 39

Sometimes, it is necessary to do some additional
transformations to remove induction veriables. Consider
the following loop:

j=n;
for (i=0; i<n; i++){

b[i]=(a[j]+a[i])/2.;
j=i;

}

Variable j is called a wraparound variable of first order. It
is called first order because only the first iteration uses a
value of j from outside the loop. A wraparound variable is
an induction variable whose value is carried from one
iteration to the next.
23 of 39

The way to remove the races produced by j is to peel off one
iteration, move the assignment to j from one iteration to the
top of the next iteration (notice that now j must be assigned i-
1), and then privatize :

j=n;
if (n>=1) {

b[1]=(a[j]+a[1])/2.;
#pragma omp parallel for private(i),lastprivate(j)

for (i=1; i<n; i++){
j=i-1;
b[i]=(a[j]+a[i])/2.;

end do
}

Notice that the if statement is necessary to make sure that the
first iteration is executed only if the original loop would have
executed it.
24 of 39

Alternatively, the wraparound variable could be an
induction variable. The transformation in this case is
basically the same as above except that the induction
variable has to be expressed in terms of the loop index
first.

Consider the loop:
j=n;
for (i=0; i<n; i++){

b[i]=(a[j]+a[i])/2.;
j+=1;

}

As we just said, we first replace the right hand side of the
assignment to j with an expression involving i.

j=n;
for (i=0; i<n; i++){

b[i]=(a[m]+a[i])/2.;
m=i+j;

}
j+=n;
25 of 39

Notice that we changed the name of the variable within the loop
to be able to use the value of j coming from outside the loop.

We can now proceed as above to obtain:
j=n;
if (n>=1) {

b[1]=(a[j]+a[i])/2.;
#pragma omp parallel for private (m)

for (i=1; i<n; i++){
m=i-1+j;
b[i]=(a[m]+a[i])/2.;

}
j=n+j; /*this must be inside the if */

}

26 of 39

Critical Regions and Reductions

Consider the following loop:

int a[][], sum;
...
for (i=0; i<n; i++)

for (j=0; j<m; j++){
a[i][j]=b[i][j]+d[i][j];
sum+=a[i][j];

}

Here, we have a race due to sum. This race cannot be
removed by the techniques discussed above. However, the
+ operation used to compute sum is associative and sum
only appears in the statement that computes its value.

The integer addition operation is not really associative, but
in practice we can assume it is if the numbers are small
enough so there is never any overflow.
27 of 39

Under these circumstances, the loop can be transformed into
the following form:

#pragma omp parallel private(local_sum)
{

local_sum=0;
#pragma omp for nowait
for (i=0; i<n; i++)

for (j=0; j<m; j++)
local_sum += a[j][i];

#pragma omp critical
sum+=local_sum;

}

28 of 39

Here, we use the critical directive to avoid the following problem.

The statement
sum=sum+local_sum

will be translated into a machine language sequence similar to the
following:

load register_1,sum
load register_2,local_sum
add register_3,register_1,register_2
store register_3,sum
29 of 39

Assume now there are two tasks executing the statement
sum=sum+local_sum

simultaneously. In one local_sum is 10, and in the other 15.
Assume sum is 0 when both tasks start executing the statement.
Consider the following sequence of events:
30 of 39

As can be seen, interleaving the instructions between the two

tasks produces incorrect results. The critical directive precludes
this interleaving. Only one task at a time can execute a critical
region with the same name.

time task 1 sum task 2

1 load
r1,local_sum

0

2 load r2, sum 0 load
r1,local_sum

3 add r3,r2,r1 0 load r2,sum

4 store r3, sum 10 add r3,r2,r1

5 15 store r3,sum
31 of 39

32 of 39

Short Hand Notation for Reduction

The reduction clause can be used to specify various classes of
reductions.

int a[][], sum;
...

 #pragma omp parallel for private(j) reduction(+:sum)
for (i=0; i<n; i++)

for (j=0; j<m; j++){
a[i][j]=b[i][j]+d[i][j]
sum+=a[i][j]

}

The general form of the clause is reduction(operator:list) where operator
is:

Operator Initialization value
+ 0
* 1
- 0
& ~0 (all bits 1)
| 0
^ 0
&& 1
|| 0

33 of 39

Performance considerations

Numerous factors affect the performance of OpenMP
programs. These include:
1. Sequential performance. All issues relevant to the

performance of sequential codes and in particular
locality are of course important for the performance of
OpenMp codes. However, redundant computations
sometimes improve parallel performance.

2. Overhead. There is a cost associated with initialization
and termination of parallel regions, workshare for loops,
barriers, and critical sections.

3. Load balancing and granularity. The scheduling strategy
influences these.

4. Communication. Although there is no explicit
communication, parallel computations always involve
communication. In the case of shared-memory
programs, attention must be paid to memory accesses
and cache behavior

34 of 39

Sequential performance

Locality is of crucial importance not only for sequential
but also for parallel performance. The tiling techniques
discussed earlier are of great importance here.

Sometimes redundat computation can be useful for paralle
peformance. So, in

for (i=1; i<n; i++)
c[i] = 3*i;

#pragma omp parallel
{

...
use of c[]
...

}
the values of c must be tranferred from the master thread
to each of the threads executing the parallel region. This
would typically involve copying across caches.

Moving the computation of c inside the parallel region
would avoid this problem. There would generate n
additional computations inside each thread, but would
avoid the data copying.

35 of 39

Overhead

Sometimes it is better to execute serially. Typically this
happens when the amount of computation is too small to
justify the overhead. In OpenMP, the if clause:

#pragma omp parallel for if(n>MIN_NUM)
for (i=1; i<n; i++){

...
a[i] = a[i-1] + 1;
...

}

dynamically controls when the poop will be executed in
parallel.

Sometimes the best way to identify the minimum number
of iterations (MIN_NUM)is by experimentally trying several
values.

The overhead is also influenced by the granularity.

Load balancing and granularity

The schedule clause is designed to control these factors.
Some of the scheduling options are:

static
When schedule(static, chunk_size) is specified,
iterations are divided into chunks of size chunk_size,
and the chunks are assigned to the threads in the
team in a round-robin fashion in the order of the
thread number.

dynamic
When schedule(dynamic, chunk_size) is specified,
the iterations are distributed to threads in the team in
chunks as the threads request them. Each thread
executes a chunk of iterations, then requests another
chunk, until no chunks remain to be distributed.
36 of 39

guided

When schedule(guided, chunk_size) is specified,
the iterations are assigned to threads in the team in
chunks as the executing threads request them. Each
thread executes a chunk of iterations, then requests
another chunk, until no chunks remain to be
assigned.

For a chunk_size of 1, the size of each chunk is
proportional to the number of unassigned iterations
divided by the number of threads in the team,
decreasing to 1. For a chunk_size with value k
(greater than 1), the size of each chunk is determined
in the same way, with the restriction that the chunks
do not contain fewer than k iterations (except for the
last chunk to be assigned, which may have fewer
than k iterations).
37 of 39

Communication

Issues of communication are of course of great importance.
One of the difficulties of OpenMP is that communication is
often implicit. This has been mentioned as a disadvantage
of OpenMP relative to MPI.

The example mentioned above under sequential
performance where c was computed redundantly is an
example of transformations to reduce communication.

False sharing can cause performance dgradation. In false
sharing diiferent threads access different data items
collocated in the same cache line. This can cause significant
communication costs.
38 of 39

For example, in the program

#pragma omp parallel for schedule(dynamic,1)
for (i=1; i<n; i++){

...
a[i] = ...;
...

}

each cahce line may have to travel across several threads to
enable the assigment of values to the different elements of
array a.
39 of 39

	OpenMP
	Races
	Race-free parallel loops
	Privatization
	Induction variables
	Critical Regions and Reductions

