
1 of 17

OpenMP

(Part 1)

Introduction

OpenMP is a collection of compiler directives, library
routines, and environment variables to specify shared
memory parallelism.

This collection was designed by committee involving
computer vendors including Intel, HP, IBM, and SGI.

Thereare Fortran, C and C++ directives.

See http://www.openmp.org
2 of 17

The parallel directive

The parallel construct defines a parallel region.

An OpenMP program begins execution as a single thread,
called the initial thread. When a thread encounters a
parallel construct it becomes a master thread which creates
a team of threads. The statements enclosed by the parallel
construct, are executed by each thread in the team.

At the end of the parallel construct the threads in the team
synchronize and only the master thread continues
execution.
3 of 17

The general form of this construct is:

#pragma omp parallel [clause[[,]clause] ...] new-line
structured-block

where clause is one of
if(scalar-expression)
num_threads(integer-expression)
default(shared | none)
private(list)
firstprivate(list)
shared(list)
copyin(list)
reduction(operator: list)

Next, we discuss the private(list)clause.

Private variables are undefined upon entering the parallel
construct and are also undefined on exit from it.
4 of 17

Consider,

c = fun (d);
for (i=0;i <n; i++) a[i] = b[i] + c;
for (i=0; i<n; i++) e[i] = a[20]+ a[15];

A simple OpenMP implementation is
float c = fun(d);
int nt = omp_get_num_threads();

#pragma omp parallel private(i,il,iu,tn)

{ int tn=omp_get_thread_num();
int il=(i<(n%nt))?((n+nt-1)/nt)*i:(n/nt)*i + n%nt;
int iu=(i<(n%nt))?((n+nt-1)/nt)*(i+1)-1:(n/nt)*(i+1)+n%nt-1;

for (i=il; i <= iu; i++) a[i] = b[i] + c;
}

for (i=0; i<n; i++) e[i] = a[20] + a[15];
5 of 17

The first two statements can be moved inside the parallel region and
c and nt can be declared private if they are not used again after the
loop.

#pragma omp parallel private(i,il,iu,tn,c,nt)

{ float c = fun(d);
int nt = omp_get_num_threads();

int tn=omp_get_thread_num();
int il=(i<(n%nt))?((n+nt-1)/nt)*i:(n/nt)*i + n%nt;
int iu=(i<(n%nt))?((n+nt-1)/nt)*(i+1)-1:(n/nt)*(i+1)+n%nt-1;

for (i=il; i <= iu; i++)
a[i] = b[i] + c;

}

for (i=0; i<n; i++) e[i] = a[20] + a[15];
6 of 17

The barrier directive

To incorporate the assignments to e[i] into the parallel region it is
necessary to make sure that a[20] and a[15] have been computed
before the for statement executes.

This can be done with a barrier construct which synchronizes all the
threads in the enclosing parallel region. When encountered, each
thread waits until all the others in that team have reached this point.

#pragma omp parallel private(i,il,iu,tn,c,nt)

{ float c = fun(d);
int nt = omp_get_num_threads();
int tn=omp_get_thread_num();
int il=(i<(n%nt))?((n+nt-1)/nt)*i:(n/nt)*i + n%nt;
int iu=(i<(n%nt))?((n+nt-1)/nt)*(i+1)-1:(n/nt)*(i+1)+n%nt-1;

for (i=il; i <= iu; i++)
a[i] = b[i] + c;

#pragma omp barrier
for (i=il; i<iu; i++) e[i] = a[20] + a[15];

}

7 of 17

The for construct

A simpler way to write the previous code uses the for directive:

#pragma omp parallel private(c)

{ float c = fun(d);
#pragma omp for
for (i=0; i < n; i++) a[i] = b[i] + c;
#pragma omp barrier

 #pragma omp for
for (i=0; i< n; i++) e[i] = a[20] + a[15];

}

The for construct specifies that the iterations of the immediately
following for loop will be distributed among the different trehads
in the team executing the parallel region.

The pragma omp barrier is not needed since the first for
construct generates an implicit barrier.
8 of 17

The syntax of the for construct is as follows:

#pragma omp for [clause[[,] clause] ...] new-line
for-loops

There are several for clauses including private and
schedule.

The schedule could assume other values including dynamic.

The nowait clause eliminates the implicit barrier at the end
of the for loop. In the previous example, the nowait clause
an be added to both loops because of the explicit barrier at
the end of the first for loop and the implicit barrier at the
end of the second loop.
9 of 17

Another example of for with the nowait clause is
void forfun(a,b,c,d,m,n)

int m,n;
float a[n][n],b[n][n],c[m][m],d[m][m];
{
#pragma omp parallel private(j)

{
#pragma omp for schedule(dynamic),nowait
for (i=1; i < n; i++)

for (j=0; j <i; j++)
b[j][i]=(a[j][i]+a[j][i+1])/2;

#pragma omp for schedule(dynamic),nowait
for (i=1; i < m; i++)

for (j=0; j <m; j++)
d[i][j]=(c[j][i]+c[j][i-1])/2;

}
}

In this case it is correct for any thread in the team to proceed to the
second loop before the first loop has completed since the two
loops operate on completely different arrays.

Question: Would the nowait be correct if we replace c by b in
the second loop ?
10 of 17

The parallel for construct

An alternative to the for is the parallel for construct
which is no more than a shortcut for a parallel construct
containing a single for construct.

For example, the following code segment

#pragma omp parallel
#pragma omp for schedule(dynamic), nowait

for (i=1; i < n; i++)
b[i]=(a[i]+a[i+1])/2;

could be rewritten

#pragma omp parallel for schedule(dynamic)
for (i=1; i < n; i++)

b[i]=(a[i]+a[i+1])/2;
11 of 17

And the routine forfun can be rewritten as follows:

void forfun(a,b,c,d,m,n)
int m,n;
float a[n][n],b[n][n],c[m][m],d[m][m];
{

int i,j;
#pragma omp parallel for schedule(dynamic)

for (i=1; i < n; i++)
for (j=0; j <i; j++)

b[j][i]=(a[j][i]+a[j][i+1])/2;

#pragma omp parallel for schedule(dynamic)
for (i=1; i < m; i++)

for (j=0; j <m; j++)
d[i][j]=(c[j][i]+c[j][i-1])/2;

}

12 of 17

There are two disadvantages to this last version of forfun:
1. There is a barrier at the end of the first loop.
2. There are two parallel regions. There is overhead at the

beginning of each.
13 of 17

The single construct

The single construct has the following syntax:

#pragma omp single [clause[[,] clause] ...] new-line
structured-block

The enclosed region of code is executed by only one of the
tasks in the team.

Tasks in the team not executing the single block wait at
the end single, unless nowait is specified.
14 of 17

15 of 17

An example of single:

void sp_1a(a,b,n){
 #pragma omp parallel private(i)
 {
 #pragma omp for

 for (i=0; i < n; i++) a[i]=1.0/a[i];
 #pragma omp single
 a[1]=min(a[1],1.0);
 #pragma omp for nowait

 for (i=0; i < n; i++) b[i]=b[i]/a[i];
 }

16 of 17

The sections construct

An alternative way to write the forfun routine is:

void forfun(a,b,c,d,m,n)
int m,n;
float a[n][n],b[n][n],c[m][m],d[m][m];
{
#pragma omp sections private(i,j)

{
#pragma omp section

for (i=1; i < n; i++)
for (j=0; j <i; j++)

b[j][i]=(a[j][i]+a[j][i+1])/2;

#pragma omp section
for (i=1; i < m; i++)

for (j=0; j <m; j++)
d[i][j]=(c[j][i]+c[j][i-1])/2;

}

The sections directive specifies that the enclosed sections of
code are to be divided among threads in the team. Each section
is executed by one thread in the team. Its syntax is as follows:

#pragma omp sections [clause[[,] clause] ...] new-line
 {
 [#pragma omp section new-line]
 structured-block
 [#pragma omp section new-line
 structured-block]
 ...
 }
17 of 17

	OpenMP
	Introduction
	The parallel directive
	The barrier directive
	The for construct
	The parallel for construct
	The single construct
	The sections construct

