

Chapter 5

Basics of Parallelization
1 of 31

2 of 31

Why parallelize?

Two reasons:

• A single core would be too slow

• The amount of memory a single system does not suffice

- The alternative is to use out-of-core techniques.

3 of 31

Parallelization methods

• Data parallelism. Apply “same” operation to all elements of
an aggregate (array, set, nodes in a graph, ...)

- Fine-Grained parallelism. Vector machines.
Microprocessor vector extensions.

- Medium-grained parallelism. “A few” elements per
processor.

- Coarse-grained parallelism. Numerous element per
processor.

4 of 31

Example: consider the Jacobi algorithm from chapter 3

The way to implement it in parallel for a distributed memory
machine is to use ghost layers for communication:

5 of 31

There are multiple ways to partition the data across processors
(domain decomposition):

 Which one is better ?

Vector notation for data parallel algorithms

Next, we study several algorithms where parallelism can be
easily expressed in terms of array operations. We will use
Fortran 90 to represent these algorithms.

Simplistic timing figures will be given in some cases for SIMD
machines.

In these timings, subscript computations and memory access/
communications costs will be ignored.
6 of 31

Time to execute a vector operation

Let us start with the simplest possible situation. Consider the
following generic vector operation:

a(1:n) # b(1:n)

Consider an array machine with P arithmetic units.

The execution time is:

tparallel
n
P---
t#=

where t# is the time to execute one # operation.
7 of 31

Reductions in Fortran 90

A typical reduction is sum(array) which returns,as we should
expect, the sum of the elements of an integer, real, or complex
array. It returns zero if array has size zero.

Others include:

all(mask) Returns the logical value .true. if all
elements of of the logical array mask are
.true. or mask has size zero, and
otherwise returns the value .false.

any(mask) Returns the logical value .true. if any of
the elements of the logical array mask is
.true. , and returns the value .false.
if no elements are .true. or if mask
has size zero.

count(mask) Returns the number of .true. values in
mask.

maxval(array) Returns the maximum value of the
elements of an integer or real array.
8 of 31

minval(array) Returns the minimum value of the
elements of an integer or real array.

product(array) returns the product of the elements of an
integer, real, or complex array. It returns 1
if array has size zero.

All these functions have an optional argument dim if this is
present, the operation is applied to all rank-one sections that
span right through dimension dim to produce an array of rank
reduced by one and extends equal to the extents in the other
dimensions. For example, if a is a real array of shape [4,5,6],
sum(a,dim=2) is a real array of shape [4,6] and element (i,j)
has value sum(a(i,:,j)).

The functions maxval, minval, product, and sum have a
third optional argument, mask. If this is present, it must have
the same shape as the first argument and the operation is
applied to the elements corresponding to true elements of
mask; for esample, sum(a,mask=a>0) sums the positive
elements of the array a.
9 of 31

Two other useful Fortran 90 functions.

1. spread(source,dim,ncopies)

Returns an array of rhe same type as source but with rank
increased by one over source. Source may be a scalar or an
array. Dim and ncopies are integer scalars. The result
contains max(ncopies,0) copies of source, and element
(r1,...,rn+1) of the result is source (s1,...,sn) where (s1,...,sn) is
(r1,...,rn+1) with subscript dim omitted (or source itself if it is
a scalar).

Example of use:

a=spread(x,dim=2,ncopies=n)+spread(x,1,n)
w=sum(abs(a),dim=1)
10 of 31

is equivalent to:

do i=1,n
w(i)=0
do j=1,n

w(i)=w(i)+abs(x(i)+x(j))
end do

end do

2. maxloc(array[,mask])

Returns a rank-one integer array of size equal to the rank of
array. Its value is the subscript of an element of maximum
value.
11 of 31

Time to Execute a Reduction

Consider a reduction such as:
r = sum(a(1:n)) = a(1) + a(2) + a(3) + ... a(n)

or, in general
r = a(1) # a(2) # a(3) # ... a(n)

A sequence of log2n vector operations of length n/2, n/4, ..., 1
suffices to compute the reduction (assuming associativity of
the # operation).

In the case of an array machine, there are two cases. First, if P
< n/2, and if we follow the approach presented in our
discussion of reductions in OpenMP, we have:

tparallel
n
P---

1– 
  t+ P 1–()t++=
12 of 31

If the final reduction can also be done in logarithmic time using
a reduction tree approach:

+ + + +

+

++

In this case, the execution time is:

tparallel
n
P---

1– 
  t+ Plog t++=
13 of 31

If P >= n/2, the time is:

tparallel nlog t+=

The # operation could be a simple arithmetic operation such as s
+ or * or it could be a more complex binary operation. For
example, to implement maxloc in logarithmic time we could
define an operation on two pairs consisting of a value and a
location:
(v1,loc1) # (v2,loc2)=

if v1 < v2 then return(v1,loc1)
 else return(v2,loc2)

And, to implement an in logarithmic time an operation that finds
the location of the first negative value in a vector we could define
the following similar operation:
(v1,loc1) # (v2,loc2)=

if v1 < 0 then return(v1,loc1)
 else return(v2,loc2)

Notice that both of these operations are associative (but NOT
commutative).
14 of 31

Parallel Prefix

Consider the following loop:

A(0)=0
DO I=1,N

A(I)=A(I-1)+B(I)
END DO

The loop seems sequential because each iteration needs
information on the value computed in the preceding iteration.

However, we can use a parallel prefix approach to compute the
value of vector A in parallel as follows:

B(N-1)+B(N)B(3)+B(4)B(2)+B(3)B(1)+B(2) B(1) . . .

B(N)B(4)B(3)B(2)B(1) . . .

B(N-3)+B(N-2)B(1)+B(2)+B(1)+B(2)+B(1)+B(2)B(1) . . .

B(3) B(3)+B(4) +B(N-1)+B(N)
15 of 31

A parallel program implementing this strategy under the
assumption that N=2k is:

A(1:N)=B(1:N)
DO I=0,K-1

A(2**I+1:N)=A(2**I+1:N)+A(1:N-2**I+1)
END DO

For an array machine with the number of procesing units P>=n-
1:

tparallel t+ nlog=

As in the case of reduction, parallel prefix can be applied to
any associative binary operation.
16 of 31

Matrix-Vector Multiplication

In mathematical notation

A11 A12 … A1n
A21 A22 … A2n
… … … …
Am1 Am2 … Amn

V1
V2
…
Vn

A1iVi
i 1=

n



A2iVi
i 1=

n


…

AmiVi
i 1=

n



=

:

In Fortran:
do i=1,m

R(i) = 0
do j=1,n

R(i) = R(i) + A(i,j) * V(j)
end do

end do
17 of 31

The inner loop performs a dot product (or inner product) of two
vectors. It can be represetned in Fortran 90 as follows:
do i=1,m

R(i)=DOT_PRODUCT(A(i,1:n),V(1:n))
end do

The dot product is a vector multiplication (of length n, in this
case) followed by a reduction.

In an array machine or in a multiprocessor, the time if P>n is

m nlog t+ t*+()()

:

18 of 31

Alternatively, by interchanging the loop headers, the program
could be written as follows:
do j=1,n

do i=1,m
R(i) = R(i) + A(i,j) * V(j)

end do
end do

This leads to the following sequence of vector operations:
do j=1,n

R(1:m)=R(1:m)+A(1:m,j)*V(j)
end do

In an array machine or in a multiprocessor, the time (if P > m)
is

t+ t*+()n

:

19 of 31

Matrix-Matrix Multiplication

1. Inner product method.
Matrix multiplication is usually written:

do i=1,n
do j=1,n

do k=1,n
C(i,j)=C(i,j)+A(i,k)*B(k,j)

end do
end do

end do

The most direct translation of this program into vector form
is:

do i=1,n
do j=1,n

C(i,j)=DOT_PRODUCT(A(i,1:n),B(1:n,j))
end do

end do

The time on an array machine or multiprocessor if P > n is

t+ nlog t*+()n2

:

20 of 31

2. Middle-product method (n-parallelism)

This is obtained by interchanging the headers in the original
matrix multiplication loop.

do j=1,n
do k=1,n

do i=1,n
C(i,j)=C(i,j)+A(i,k)*B(k,j)

end do
end do

end do

The direct translation of this loop into vector form is:

do j=1,n
do k=1,n

 C(1:n,j)=C(1:n,j)+A(1:n,k)*B(k,j)
end do

end do
21 of 31

Alternatively, the headers could have been exchanged in a
different order to obtain the loop:

do i=1,n
do k=1,n
 C(i,1:n)=C(i,1:n)+A(i,k)*B(k,1:n)
end do

end do

The time in an array machine is

t+ t*+()n2

:

22 of 31

Sorting in Fortran 90.

There are many parallel sorting algorithms. We will discuss two
very simple ones in this chapter and more elaborate algorithms
later in the semester.

Perhaps the simplest sorting algorithm is bubble sort. (Text
extracterd from Kumar et al. Introduction to Parallel
Computing) It compares and exchages adjacent elements in
the sequence to be sorted. Given the sequence a1, a2, ...,an,
the algorith first performs n-1 compare-exchange operations in
the following order: (a1,a2),(a2,a3), ...(an-1,an). This step moves
the largest element to the end of the sequence. The last ement
in the sequence is then ignored, and the sequence of compare
exchanges is applied to the resulting sequence. The sequence
is sorted after n-1 iterations. The algorithm is as follows:

do i=n-1,1,-1
do j=1,i

if (a(j) > a(j+1)) swap (a(j),a(j+1))
end do

end do
23 of 31

Where swap(a,b) is just the sequence

t=a
a=b
b=t

This algorithm can be easily parallelized as discussed later on.

For vectorization, we will use the following slightly modifed
version known as odd-even transposition:

do i=1,n
if i is odd then

do j=0,n/2-1
if (a(2*j+1)>a(2*j+2)) swap(a(2*j+1),a(2*j+2))

end do
end if
if i is even then

do j=1,n/2-1
if (a(2*j)>a(2*j+1)) swap(a(2*j),a(2*j+1))

end do
end if

end do

The algorithm alternates between two phases: odd and even.
During the odd phase, elements with odd indices are
24 of 31

compared with their right neighbors, and if they are out of
sequence they are exchanged. Similarly, during the even
phase, elements with even indices are compared with their
right neighbors, and if they are out of sequence they are
exchanged.

Vectorization is quite simple:

do i=1,n
if i is odd then

where (a(1:n-1:2)>a(2:n:2))
swap (a(1:n-1:2),a(2:n:2))

end where
end if
if i is even then

where (a(2:n-2:2)>a(3:n-1:2))
swap (a(2:n-2:2),a(3:n-1:2))

end where
end if

end do
25 of 31

Bubble sort is not a very efficient algorithm. It takes n(n-1)/2
comparisons to complete. The parallel version reduces that to
n steps, but a good sequential algorithm only requires a
number of comparisons proportional to n log n. And there are
paralle algorithm that require time proportional to log2n. So this
is ok, but not great.
26 of 31

A better sorting algorithms in some situations is radix sort. This
was the algorithm used to sort punched cards with electro-
mechanical devices.

The idea is that the values to be sorted are assumed to be
numbers in a certain radix. Integers could be radix 10 or 2
depending on the circumstances. For punched cards, it was
base 10. In today’s machines, we could assume base two, but
any other base can be assumed. When values are names,
base 26 can be assumed.

Radix sort, goes through all the “digits” starting with the less
significant one. For each digit it processes the whole
sequence. Elements of the sequence are placed in separate
buckets, one for each possible digit. Placement in the buckets
is in the order theelements appear in the sequence. After
processing all elements for a particular position, the buckets
are catenated to create the sequence for the next position.
27 of 31

Consider for example the following sequence:

223, 148, 221, 071, 138, 131.

After the first step, the sequence will be separated as follows:

bucket 0 1 2 3 4 5 6 7 8 9

221 223 148

071 138

131

After catenation, we get: 221,071,131,223,148,138.

Now, the digits in the second position are processed:

bucket 0 1 2 3 4 5 6 7 8 9

221 131 148 071

223 138

Again,the buckets are catenated: 221,223,131,138, 148,071.
28 of 31

Then, the digits in the third position are processed:

bucket 0 1 2 3 4 5 6 7 8 9

071 131 221

138 223

148

Finally, the sorted sequence is obtained by catenating the
buckets: 071,131,138,148, 221, 223.

The algorithm can be easily implemented in Fortran 90 using
the pack intrinsic function. Pack(array, mask) returns a
one-dimensional array containing the elements of array to
pass the mask.
29 of 31

Thus, assuming that the sequence to be sorted is in vector a,
and that the elements are in base b and contain d digits each, we
can proceed as follows:

do i=1,d

m_0(1:n) = the digit in a(1:n) with weight bi-1 is 0
m_1(1:n) = the digit in a(1:n) with weight bi-1 is 1
...

m_b1(1:n) = the digit in a(1:n) with weight bi-1 is b-1
a=(/pack(a,m_0),pack(a,m_1),...,pack(a,m_b1)/)

end do

In particular for base 2, only one mask is needed:
do i=1,d

m=mod(a,2**i)<2**(i-1)
a= (/pack(a,m),pack(a,.not.m)/)

end do
30 of 31

Pack can be implemented in parallel using the primitives
discussed earlier in class:

function pack(a,m)
order=parallel_prefix(m)
where (m)

temp(order(:))=a(:)
end where
pack=temp
return

end
31 of 31

	Why parallelize?
	Parallelization methods
	Chapter 5
	Basics of Parallelization
	Vector notation for data parallel algorithms
	Time to execute a vector operation
	Reductions in Fortran 90
	Two other useful Fortran 90 functions.
	Time to Execute a Reduction
	Parallel Prefix
	Matrix-Vector Multiplication
	Matrix-Matrix Multiplication
	Sorting in Fortran 90.

