
Introduction to High Performance
Computing for Scientists and
Engineers

Chapter 4: Parallel Computers

Parallel Computers

2

✤ World’s fastest supercomputers have always exploited some degree
of parallelism in their hardware

✤ With advent of multicore processors, virtually all computers today
are parallel computers, even desktop and laptop computers

✤ Today’s largest supercomputers have hundreds of thousands of cores
and soon will have millions of cores

✤ Parallel computers require more complex algorithms and
programming to divide computational work among multiple
processors and coordinate their activities

✤ Efficient use of additional processors becomes increasingly difficult
as total number of processors grows (scalability)

Flynn’s Taxonomy

✤ SISD: single instruction stream, single data stream

• conventional serial computers

✤ SIMD: single instruction stream, multiple data streams

• vector or data parallel computers

✤ MISD: multiple instruction streams, single data stream

• pipelined computers

✤ MIMD: multiple instruction streams, multiple data streams

• general purpose parallel computers
3

Computers can be classified by numbers of instruction
and data streams

SPMD Programming Style

✤ Easier to program than true MIMD but more flexible than SIMD

✤ Most parallel computers today have MIMD architecture but are
programmed in SPMD style

4

SPMD (single program, multiple data): all processors
execute same program, but each operates on different
portion of problem data

Parallel Computer Architectures

✤ Processor coordination: synchronous or asynchronous?

✤ Memory organization: distributed or shared?

✤ Address space: local or global?

✤ Memory access: uniform or nonuniform?

✤ Granularity: coarse or fine?

✤ Scalability: additional processors used efficiently?

✤ Interconnection network: topology, switching, routing?

5

Parallel architectural design issues

Major Architectural Paradigms

6

P
0

P
1

PN

M
0

M
1

MN

network

• • •

• • •

shared-memory multiprocessor

P
0

P
1

PN

network

• • •

M
0

M
1

MN• • •

distributed-memory multicomputer

Memory organization is fundamental architectural design
choice: How are processors connected to memory?

Can also have hybrid combinations of these

Parallel Programming Styles
✤ Shared-memory multiprocessor

• Entire problem data stored in common memory

• Programs do loads and stores from common (and typically
remote) memory

• Protocols required to maintain data integrity

• Often exploit loop-level parallelism using pool of tasks paradigm
✤ Distributed-memory multicomputer

• Problem data partitioned among private processor memories

• Programs communicate by sending messages between processors

• Messaging protocol provides synchronization

• Often exploit domain decomposition parallelism
7

Distributed vs. Shared Memory

8

distributed
memory

shared
memory

scalability
data mapping
data integrity

incremental
parallelization

automatic
parallelization

easier harder
harder easier
easier harder

harder easier

harder easier

Shared-Memory Computers
✤ UMA (uniform memory access): same latency and bandwidth for all

processors and memory locations

• sometimes called SMP (symmetric multiprocessor)

• often implemented using bus, crossbar, or multistage network

• multicore processor is typically SMP
✤ NUMA (nonuniform memory access): latency and bandwidth vary

with processor and memory location

• some memory locations “closer” than others, with different access
speeds

• consistency of multiple caches is crucial to correctness

• ccNUMA: cache coherent nonuniform memory access

9

Cache Coherence
✤ In shared memory multiprocessor, same cache line in main memory

may reside in cache of more than one processor, so values could be
inconsistent

✤ Cache coherence protocol ensures consistent view of memory
regardless of modifications of values in cache of any processor

✤ Cache coherence protocol keeps track of state of each cache line

✤ MESI protocol is typical

• M, modified: has been modified, and resides in no other cache

• E, exclusive: not yet modified, and resides in no other cache

• S, shared: not yet modified, and resides in multiple caches

• I, invalid: may be inconsistent, value not to be trusted
10

Cache Coherence
✤ Small systems often implement cache coherence using bus snoop

✤ Larger systems typically use directory-based protocol that keeps track
of all cache lines in system

✤ Coherence traffic can hurt application performance, especially if
same cache line is modified frequently by different processors, as in
false sharing

11

Hybrid Parallel Architectures
✤ Most large computers today have hierarchical combination of shared

and distributed memory, with memory shared locally within SMP
nodes but distributed globally across nodes interconnected by
network

12

Communication Networks
✤ Access to remote data requires communication

✤ Direct connections among p processors would require O(p2) wires
and communication ports, which in infeasible for large p

✤ Limited connectivity necessitates routing data through intermediate
processors or switches

✤ Topology of network affects algorithm design, implementation, and
performance

13

Common Network Topologies

14

bus

star crossbar

1-D torus (ring) 2-D mesh 2-D torus

1-D mesh

Common Network Topologies

15

butterfly

binary tree

0-cube

1-cube 2-cube 3-cube 4-cube

hypercubes

Graph Terminology
✤ Graph: pair (V, E), where V is set of vertices or nodes connected by set

E of edges

✤ Complete graph: graph in which any two nodes are connected by an
edge

✤ Path: sequence of contiguous edges in graph

✤ Connected graph: graph in which any two nodes are connected by a
path

✤ Cycle: path of length greater than one that connects a node to itself

✤ Tree: connected graph containing no cycles

✤ Spanning tree: subgraph that includes all nodes of given graph and is
also a tree

16

Graph Models
✤ Graph model of network: nodes are processors (or switches or

memory units), edges are communication links

✤ Graph model of computation: nodes are tasks, edges are data
dependences between tasks

✤ Mapping task graph of computation to network graph of target
computer is instance of graph embedding

✤ Distance between two nodes: number of edges (hops) in shortest path
between them

17

Network Properties
✤ Degree: maximum number of edges incident on any node

• determines number of communication ports per processor
✤ Diameter: maximum distance between any pair of nodes

• determines maximum communication delay between processors
✤ Bisection width: smallest number of edges whose removal splits graph

into two subgraphs of equal size

• determines ability to support simultaneous global communication
✤ Edge length: maximum physical length of any wire

• may be constant or variable as number of processors varies

18

Network Properties

19

Graph Embedding
✤ Graph embedding: φ: Vs → Vt maps nodes in source graph Gs = (Vs, Es)

to nodes in target graph Gt = (Vt, Et)

✤ Edges in Gs mapped to paths in Gt

✤ Load: maximum number of nodes in Vs mapped to same node in Vt

✤ Congestion: maximum number of edges in Es mapped to paths
containing same edge in Et

✤ Dilation: maximum distance between any two nodes φ(u), φ(v) ∈ Vt
such that (u,v) ∈ Es

20

Graph Embedding
✤ Uniform load helps balance work across processors

✤ Minimizing congestion optimizes use of available bandwidth of
network links

✤ Minimizing dilation keeps nearest-neighbor communications in
source graph as short as possible in target graph

✤ Perfect embedding has load, congestion, and dilation 1, but not
always possible

✤ Optimal embedding difficult to determine (NP-complete, in general),
so heuristics used to determine good embedding

21

Graph Embedding Examples
✤ For some important cases, good or optimal embeddings are known

22

Gray Code
✤ Gray code: ordering of integers 0 to 2n−1 such that consecutive

members differ in exactly one bit position

✤ Example: binary reflected Gray code of length 16

23

Computing Gray Code

24

Hypercube Embeddings
✤ Visiting nodes of hypercube in Gray code order gives Hamiltonian

cycle embedding ring in hypercube

✤ For mesh or torus of higher dimension, concatenating Gray codes for
each dimension gives embedding in hypercube

25

Communication Cost
✤ Simple model for time required to send message (move data)

between adjacent nodes: Tmsg = ts + tw L, where

• ts = startup time = latency (time to send message of length 0)

• tw = incremental transfer time per word (bandwidth = 1/tw)

• L = length of message in words
✤ For most real parallel systems, ts >> tw

✤ Caveats

• Some systems treat message of length 0 as special case or may
have minimum message size greater than 0

• Many systems use different protocols depending on message size
(e.g. 1-trip vs. 3-trip)

26

Message Routing
✤ Messages sent between nodes that are not directly connected must be

routed through intermediate nodes

✤ Message routing algorithms can be

• minimal or nonminimal, depending on whether shortest path is
always taken

• static or dynamic, depending on whether same path is always taken

• deterministic or randomized, depending on whether path is chosen
systematically or randomly

• circuit switched or packet switched, depending on whether entire
message goes along reserved path or is transferred in segments
that may not all take same path

✤ Most regular network topologies admit simple routing schemes that
are static, deterministic, and minimal

27

Message Routing Examples

28

Routing Schemes
✤ Store-and-forward routing: entire message is received and stored

at each node before being forwarded to next node on path, so
Tmsg = (ts + tw L) D, where D = distance in hops

✤ Cut-through (or wormhole) routing: message broken into segments
that are pipelined through network, with each segment
forwarded as soon as it is received, so Tmsg = ts + tw L + th D,
where th = incremental time per hop

29

Communication Concurrency
✤ For given communication system, it may or may not be possible for

each node to

• send message while receiving another simultaneously on same
communication link

• send message on one link while receiving simultaneously on
different link

• send or receive, or both, simultaneously on multiple links

✤ Depending on concurrency supported, time required for each step of
communication algorithm is effectively multiplied by appropriate
factor (e.g., degree of network graph)

30

Communication Concurrency
✤ When multiple messages contend for network bandwidth, time

required to send message modeled by Tmsg = ts + tw S L, where S is
number of messages sent concurrently over same communication
link

✤ In effect, each message uses 1/S of available bandwidth

31

Collective Communication
✤ Collective communication: multiple nodes communicating

simultaneously in systematic pattern, such as

• broadcast: one-to-all

• reduction: all-to-one

• multinode broadcast: all-to-all

• scatter/gather: one-to-all/all-to-one

• total or complete exchange: personalized all-to-all

• scan or prefix

• circular shift

• barrier

32

Collective Communication

33

Broadcast
✤ Broadcast: source node sends same message to each of p−1 other

nodes

✤ Generic broadcast algorithm generates spanning tree, with source
node as root

34

Broadcast

35

Broadcast
✤ Cost of broadcast depends on network, for example

• 1-D mesh: Tbcast = (p − 1) (ts + tw L)

• 2-D mesh: Tbcast = 2 (√p − 1) (ts + tw L)

• hypercube: Tbcast = log p (ts + tw L)

✤ For long messages, bandwidth utilization may be enhanced by
breaking message into segments and either

• pipeline segments along single spanning tree, or

• send each segment along different spanning tree having same root

• can also use scatter/allgather

36

Reduction
✤ Reduction: data from all p nodes are combined by applying specified

associative operation ⊕ (e.g., sum, product, max, min, logical OR,
logical AND) to produce overall result

✤ Generic broadcast algorithm generates spanning tree, with source
node as root

37

Reduction

38

Reduction
✤ Subsequent broadcast required if all nodes need result of reduction

✤ Cost of reduction depends on network, for example

• 1-D mesh: Tbcast = (p − 1) (ts + (tw + tc) L)

• 2-D mesh: Tbcast = 2 (√p − 1) (ts + (tw + tc) L)

• hypercube: Tbcast = log p (ts + (tw + tc) L)

✤ Time per word for associative reduction operation, tc , is often much
smaller than tw , so is sometimes omitted from performance analyses

39

Multinode Broadcast
✤ Multinode broadcast: each of p nodes sends message to all other nodes

(all-to-all)

✤ Logically equivalent to p broadcasts, one from each node, but
efficiency can often be enhanced by overlapping broadcasts

✤ Total time for multinode broadcast depends strongly on concurrency
supported by communication system

✤ Multinode broadcast need be no more costly than standard broadcast
if aggressive overlapping of communication is supported

40

Multinode Broadcast
✤ Implementation of multinode broadcast in specific networks

• 1D torus (ring): initiate broadcast from each node simultaneously
in same direction around ring; completes after p − 1 steps at same
cost as single-node broadcast

• 2D or 3D torus: apply ring algorithm successively in each
dimension

• hypercube: exchange messages pairwise in each of log p
dimensions, with messages concatenated at each stage

✤ Multinode broadcast can be used to implement reduction by
combining messages using associative operation instead of
concatenation, which avoids subsequent broadcast when result
needed by all nodes

41

Multinode Reduction
✤ Multinode reduction: each of p nodes is destination of reduction from

all other nodes

✤ Algorithms for multinode reduction are essentially reverse of
corresponding algorithms for multinode broadcast

42

Personalized Communication
✤ Personalized collective communication: each node sends (or receives)

distinct message to (or from) each other node

• scatter: analogous to broadcast, but root sends different message to
each other node

• gather: analogous to reduction, but data received by root are
concatenated rather than combined using associative operation

• total exchange: analogous to multinode broadcast, but each node
exchanges different message with each other node

43

Scan or Prefix
✤ Scan (or prefix): given data values x0, x1, . . ., xp−1, one per node, along

with associative operation ⊕, compute sequence of partial results s0,
s1, . . ., sp−1, where sk = x0 ⊕ x1 ⊕ ⋅ ⋅ ⋅ ⊕ xk and sk is to reside on node k,
k = 0, . . ., p − 1

✤ Scan can be implemented similarly to multinode broadcast, except
intermediate results received by each node are selectively combined
depending on sending node's numbering, before being forwarded

44

Circular Shift
✤ Circular k-shift: for 0 < k < p, node i sends data to node (i + k) mod p

✤ Circular shift implemented naturally in ring network, and by
embedding ring in other networks

45

Barrier
✤ Barrier: synchronization point that all processes must reach before

any process is allowed to proceed beyond it

✤ For distributed-memory systems, barrier usually implemented by
message passing, using algorithm similar to all-to-all

• Some systems have special network for fast barriers

✤ For shared-memory systems, barrier usually implemented using
mechanism for enforcing mutual exclusion, such as test-and-set or
semaphore, or with atomic memory operations

46

