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Data Access Latency & Bandwith
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✤ Latency and bandwidth 
for accessing data span 
many orders of 
magnitude across 
memory hierarchy



Performance & Bandwidth Trends
✤ Gap between processor performance and memory bandwidth is 

growing, especially for multicore processors
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Machine and Code Balance
✤ Balance between data access and processing speeds of machine is 

expressed by ratio Bm = W/F, where W and F are measured in words 
and floating-point operations, respectively, per unit time

✤ Similarly, balance between loads/stores and flops executed by 
program is given by Bc = W/F, where W and F are measured in 
words and floating-point operations, respectively
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Performance Model
✤ Ratio of machine balance to code balance gives crude performance 

model for expected fraction of peak performance, min(1, Bm/Bc)

✤ For example, vector triad executes three loads, one store, and two 
flops per iteration, so  Bc = W/F = (3+1)/2 = 2, and thus expected 
fraction of peak on processor with Bm = 0.1 is 0.05, or 5%

✤ Reciprocal of code balance, 1/Bc = F/W, called computational intensity 
of code, provides measure of potential data reuse

5



STREAM Benchmarks
✤ STREAM benchmarks are simple loop kernels commonly used to 

characterize memory performance

✤ Unfortunately, even these simple loops often fail to attain substantial 
fraction of peak performance

✤ STREAM benchmarks generally provide upper bound on 
performance expected of more realistic codes
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Storage Order
✤ Multidimensional arrays, especially two-dimensional matrices, are 

extremely common in scientific codes

✤ Machine memory layout is inherently one-dimensional, divided into 
cache lines

✤ Mapping of multidimensional arrays to one-dimensional memory, as 
well as order in which array entries are accessed, dramatically affect 
cache behavior of array-based programs

✤ For example, strided access to one-dimensional array (accessing every 
kth entry rather than consecutive entries) reduces spatial locality and 
effective utilization of memory bandwidth

✤ Different programming languages have different conventions for 
storing multidimensional arrays
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Row Major Order
✤ C and its variants store arrays in row major order, i.e., last subscript 

varies most rapidly
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Column Major Order
✤ Fortran stores arrays in column major order, i.e., first subscript varies 

most rapidly
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Strided Memory Access
✤ Because of different array storage orders, similar codes in different 

languages may access memory with different strides

✤ To optimize memory access, inner loop variable indexing 
multidimensional array should be chosen to ensure stride-one access 
(first index in Fortran, last index in C)
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Case Study: Diffusion Equation
✤ Diffusion equation given by

✤ Jacobi method for solving finite difference discretization

✤ Sweep through two-dimensional grid in some order, updating 
solution at each grid point by contributions from four neighboring 
grid points

✤ Requires two copies of solution array, as solution values cannot be 
overwritten until sweep is complete
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Case Study: Diffusion Equation
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Case Study: Diffusion Equation

✤ Depending on cache line size, problem dimensions, and order of 
traversal, neighboring points may still be in cache from previous 
access
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Case Study: Diffusion Equation
✤ Performance graph shows decline in performance when problem size 

exceeds cache size and code becomes memory bound
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Case Study: Matrix Transpose
✤ Calculating transpose of dense matrix, A = BT, involves no arithmetic 

operations, but illustrates performance issues in accessing memory

✤ Access to either A or B must be strided

✤ Strided write more expensive than strided read because of write 
allocate

✤ Moving index i to inner loop changes access from strided writes to 
strided reads (“flipped”)
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Case Study: Matrix Transpose
✤ If both matrices fit in cache (2 N2 ≤ C), code should run at full cache 

speed despite strided access

✤ If matrices are too large to fit in cache, but one row or column fits in 
cache (N Lc ≤ C), then spatial locality may still allow performance at 
near full cache speed

✤ If matrices are so large that one row or column does not fit in cache 
(N Lc > C), then spatial locality is lost and performance drops

✤ TLB (translation lookaside buffer) misses can also dramatically affect 
performance

✤ TLB caches mapping between logical and physical memory pages
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Case Study: Matrix Transpose
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Case Study: Matrix Transpose
✤ If dimension of matrix N 

happens to match cache line 
size, then strided access can 
cause cache thrashing

✤ Padding array can eliminate 
this effect
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Algorithm Classification
✤ Algorithms can be classified according to ratio of number of 

arithmetic operations to number of data items involved

✤ For example,

• vector addition: O(N) arithmetic operations, O(N) data

• matrix-vector multiplication: O(N2) operations, O(N2) data

• matrix-matrix multiplication: O(N3) operations, O(N2) data

✤ Opportunities for reusing data already in cache are obviously greater 
when number of operations greatly exceeds number of data items
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O(N)/O(N)
✤ When number of operations and number of data items are both 

proportional to problem size, opportunities for data reuse are limited 
and performance is generally memory bound

✤ Although loops are not nested, multiple loops can potentially 
combined to reduce number of loads, as in loop fusion

✤ Compilers can often apply this optimization
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O(N2)/O(N2)
✤ This type of algorithm usually involves nested loops with two levels

✤ Consider code for matrix-vector multiplication

✤ Matrix A is loaded once, but vector B is loaded N times, once for each 
iteration of outer loop

✤ We can fuse N inner loops by loop unrolling, traversing outer loop 
with stride m and replicating inner loop m times

✤ This technique is called unroll and jam
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Examples: Unroll and Jam
✤ Matrix-vector multiply

✤ Matrix transpose
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Example: Loop Blocking
✤ Loop blocking can achieve optimal cache line use

✤ Does not reduce loads or stores, but increases cache hit ratio

✤ Example: matrix transpose
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O(N3)/O(N2)
✤ When number of arithmetic operations exceeds number of data items 

by factor that grows with problem size, opportunities for reuse of 
data are greatly enhanced

✤ This type of algorithm usually involves nested loops with three 
levels, such as matrix-matrix multiplication

✤ Carefully chosen blocking and unrolling can often make code cache 
bound rather than memory bound

✤ Many vendors provide highly optimized libraries of routines for 
common operations of linear algebra involving dense vectors and 
matrices, such as BLAS (Basic Linear Algebra Subprograms), 
LAPACK, etc.
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Sparse Matrix-Vector Multiply
✤ Many large matrices that arise in practice are sparse, with most of 

their entries being zero

✤ Sparse matrices typically have constant number of nonzero entries 
per row or column, and hence have O(N) nonzero entries overall

✤ To take advantage of sparsity, special data structures must be used 
that store only nonzero entries and information on their location in 
matrix

✤ Two common examples are CRS (Compressed Row Storage) and JDS 
(Jagged Diagonals Storage)
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CRS — Compressed Row Storage
✤ Nonzeros stored row by row in single vector val with no gaps

✤ Corresponding column indices of nonzeros stored in single vector 
col_idx

✤ Pointers to start of each row stored in single vector row_ptr
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JDS — Jagged Diagonals Storage
✤ Nonzeros in each row shifted to left

✤ Rows sorted by number of nonzeros in descending order

✤ Columns of resulting array stored consecutively in vector val

✤ Column indices and start of jagged diagonals stored in col_idx and 
jd_ptr
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Sparse Mat-Vec with CRS and JDS
✤ CRS

✤ JDS
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CRS vs. JDS for SpMatVec
✤ CRS

• long outer loop, short inner loop
• result vector loaded only once
• nonzeros accessed with stride one
• W/F balance close to one

✤ JDS
• short outer loop, long inner loop
• result vector loaded multiple times
• nonzeros accessed with stride one
• W/F balance close to two
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Optimizing SpMatVec with JDS
✤ Unroll and jam for nonuniform lengths of diagonals requires loop 

peeling, leaving partial diagonals to be processed separately
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Optimizing SpMatVec with JDS
✤ Can also apply blocking to reduce memory traffic and enhance in-

cache performance
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Unrolling vs. Blocking
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unrolling factor 2 blocking factor 4



Performance Comparison
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