
Introduction to High Performance
Computing for Scientists and
Engineers

Chapter 3: Data Access Optimization

padua
Text Box
Slides by Mike Heath

Data Access Latency & Bandwith

2

✤ Latency and bandwidth
for accessing data span
many orders of
magnitude across
memory hierarchy

Performance & Bandwidth Trends
✤ Gap between processor performance and memory bandwidth is

growing, especially for multicore processors

3

Machine and Code Balance
✤ Balance between data access and processing speeds of machine is

expressed by ratio Bm = W/F, where W and F are measured in words
and floating-point operations, respectively, per unit time

✤ Similarly, balance between loads/stores and flops executed by
program is given by Bc = W/F, where W and F are measured in
words and floating-point operations, respectively

4

Performance Model
✤ Ratio of machine balance to code balance gives crude performance

model for expected fraction of peak performance, min(1, Bm/Bc)

✤ For example, vector triad executes three loads, one store, and two
flops per iteration, so Bc = W/F = (3+1)/2 = 2, and thus expected
fraction of peak on processor with Bm = 0.1 is 0.05, or 5%

✤ Reciprocal of code balance, 1/Bc = F/W, called computational intensity
of code, provides measure of potential data reuse

5

STREAM Benchmarks
✤ STREAM benchmarks are simple loop kernels commonly used to

characterize memory performance

✤ Unfortunately, even these simple loops often fail to attain substantial
fraction of peak performance

✤ STREAM benchmarks generally provide upper bound on
performance expected of more realistic codes

6

Storage Order
✤ Multidimensional arrays, especially two-dimensional matrices, are

extremely common in scientific codes

✤ Machine memory layout is inherently one-dimensional, divided into
cache lines

✤ Mapping of multidimensional arrays to one-dimensional memory, as
well as order in which array entries are accessed, dramatically affect
cache behavior of array-based programs

✤ For example, strided access to one-dimensional array (accessing every
kth entry rather than consecutive entries) reduces spatial locality and
effective utilization of memory bandwidth

✤ Different programming languages have different conventions for
storing multidimensional arrays

7

Row Major Order
✤ C and its variants store arrays in row major order, i.e., last subscript

varies most rapidly

8

Column Major Order
✤ Fortran stores arrays in column major order, i.e., first subscript varies

most rapidly

9

Strided Memory Access
✤ Because of different array storage orders, similar codes in different

languages may access memory with different strides

✤ To optimize memory access, inner loop variable indexing
multidimensional array should be chosen to ensure stride-one access
(first index in Fortran, last index in C)

10

Case Study: Diffusion Equation
✤ Diffusion equation given by

✤ Jacobi method for solving finite difference discretization

✤ Sweep through two-dimensional grid in some order, updating
solution at each grid point by contributions from four neighboring
grid points

✤ Requires two copies of solution array, as solution values cannot be
overwritten until sweep is complete

11

Case Study: Diffusion Equation

12

Case Study: Diffusion Equation

✤ Depending on cache line size, problem dimensions, and order of
traversal, neighboring points may still be in cache from previous
access

13

Case Study: Diffusion Equation
✤ Performance graph shows decline in performance when problem size

exceeds cache size and code becomes memory bound

14

Case Study: Matrix Transpose
✤ Calculating transpose of dense matrix, A = BT, involves no arithmetic

operations, but illustrates performance issues in accessing memory

✤ Access to either A or B must be strided

✤ Strided write more expensive than strided read because of write
allocate

✤ Moving index i to inner loop changes access from strided writes to
strided reads (“flipped”)

15

Case Study: Matrix Transpose
✤ If both matrices fit in cache (2 N2 ≤ C), code should run at full cache

speed despite strided access

✤ If matrices are too large to fit in cache, but one row or column fits in
cache (N Lc ≤ C), then spatial locality may still allow performance at
near full cache speed

✤ If matrices are so large that one row or column does not fit in cache
(N Lc > C), then spatial locality is lost and performance drops

✤ TLB (translation lookaside buffer) misses can also dramatically affect
performance

✤ TLB caches mapping between logical and physical memory pages

16

Case Study: Matrix Transpose

17

Case Study: Matrix Transpose
✤ If dimension of matrix N

happens to match cache line
size, then strided access can
cause cache thrashing

✤ Padding array can eliminate
this effect

18

Algorithm Classification
✤ Algorithms can be classified according to ratio of number of

arithmetic operations to number of data items involved

✤ For example,

• vector addition: O(N) arithmetic operations, O(N) data

• matrix-vector multiplication: O(N2) operations, O(N2) data

• matrix-matrix multiplication: O(N3) operations, O(N2) data

✤ Opportunities for reusing data already in cache are obviously greater
when number of operations greatly exceeds number of data items

19

O(N)/O(N)
✤ When number of operations and number of data items are both

proportional to problem size, opportunities for data reuse are limited
and performance is generally memory bound

✤ Although loops are not nested, multiple loops can potentially
combined to reduce number of loads, as in loop fusion

✤ Compilers can often apply this optimization

20

O(N2)/O(N2)
✤ This type of algorithm usually involves nested loops with two levels

✤ Consider code for matrix-vector multiplication

✤ Matrix A is loaded once, but vector B is loaded N times, once for each
iteration of outer loop

✤ We can fuse N inner loops by loop unrolling, traversing outer loop
with stride m and replicating inner loop m times

✤ This technique is called unroll and jam
21

Examples: Unroll and Jam
✤ Matrix-vector multiply

✤ Matrix transpose

22

Example: Loop Blocking
✤ Loop blocking can achieve optimal cache line use

✤ Does not reduce loads or stores, but increases cache hit ratio

✤ Example: matrix transpose

23

O(N3)/O(N2)
✤ When number of arithmetic operations exceeds number of data items

by factor that grows with problem size, opportunities for reuse of
data are greatly enhanced

✤ This type of algorithm usually involves nested loops with three
levels, such as matrix-matrix multiplication

✤ Carefully chosen blocking and unrolling can often make code cache
bound rather than memory bound

✤ Many vendors provide highly optimized libraries of routines for
common operations of linear algebra involving dense vectors and
matrices, such as BLAS (Basic Linear Algebra Subprograms),
LAPACK, etc.

24

Sparse Matrix-Vector Multiply
✤ Many large matrices that arise in practice are sparse, with most of

their entries being zero

✤ Sparse matrices typically have constant number of nonzero entries
per row or column, and hence have O(N) nonzero entries overall

✤ To take advantage of sparsity, special data structures must be used
that store only nonzero entries and information on their location in
matrix

✤ Two common examples are CRS (Compressed Row Storage) and JDS
(Jagged Diagonals Storage)

25

CRS — Compressed Row Storage
✤ Nonzeros stored row by row in single vector val with no gaps

✤ Corresponding column indices of nonzeros stored in single vector
col_idx

✤ Pointers to start of each row stored in single vector row_ptr

26

JDS — Jagged Diagonals Storage
✤ Nonzeros in each row shifted to left

✤ Rows sorted by number of nonzeros in descending order

✤ Columns of resulting array stored consecutively in vector val

✤ Column indices and start of jagged diagonals stored in col_idx and
jd_ptr

27

Sparse Mat-Vec with CRS and JDS
✤ CRS

✤ JDS

28

CRS vs. JDS for SpMatVec
✤ CRS

• long outer loop, short inner loop
• result vector loaded only once
• nonzeros accessed with stride one
• W/F balance close to one

✤ JDS
• short outer loop, long inner loop
• result vector loaded multiple times
• nonzeros accessed with stride one
• W/F balance close to two

29

Optimizing SpMatVec with JDS
✤ Unroll and jam for nonuniform lengths of diagonals requires loop

peeling, leaving partial diagonals to be processed separately

30

Optimizing SpMatVec with JDS
✤ Can also apply blocking to reduce memory traffic and enhance in-

cache performance

31

Unrolling vs. Blocking

32

unrolling factor 2 blocking factor 4

Performance Comparison

33

