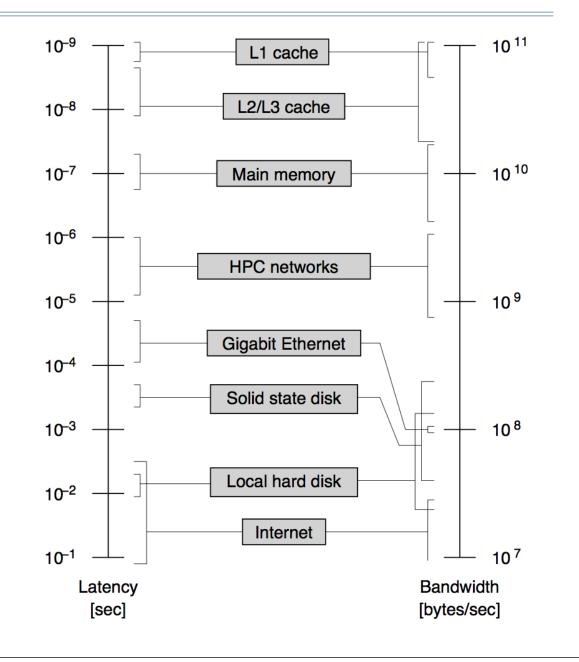
Introduction to High Performance Computing for Scientists and Engineers

Chapter 3: Data Access Optimization

Slides by Mike Heath

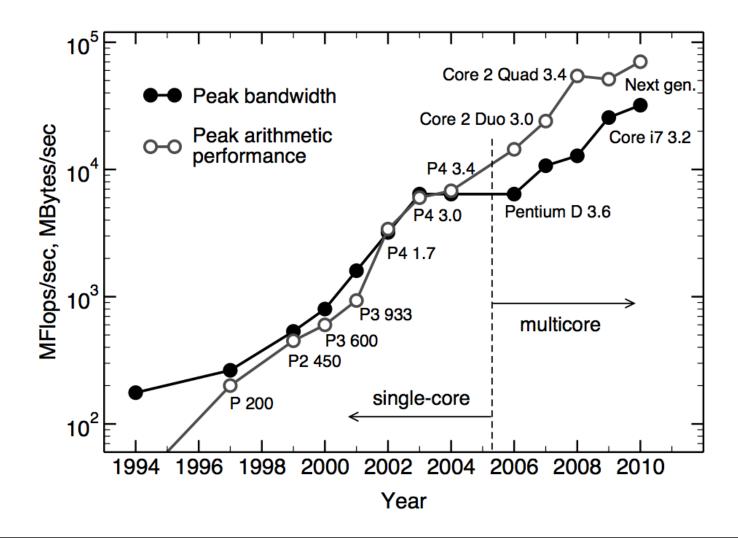
Data Access Latency & Bandwith

 Latency and bandwidth for accessing data span many orders of magnitude across memory hierarchy



Performance & Bandwidth Trends

 Gap between processor performance and memory bandwidth is growing, especially for multicore processors



Machine and Code Balance

* Balance between data access and processing speeds of machine is expressed by ratio $B_m = W/F$, where W and F are measured in words and floating-point operations, respectively, per unit time

data path	balance [W/F]
cache	0.5–1.0
machine (memory)	0.03–0.5
interconnect (high speed)	0.001-0.02
interconnect (GBit ethernet)	0.0001-0.0007
disk (or disk subsystem)	0.0001-0.01

* Similarly, balance between loads/stores and flops executed by program is given by $B_c = W/F$, where W and F are measured in words and floating-point operations, respectively

Performance Model

- * Ratio of machine balance to code balance gives crude performance model for expected fraction of peak performance, min $(1, B_m/B_c)$
- * For example, vector triad executes three loads, one store, and two flops per iteration, so $B_c = W/F = (3+1)/2 = 2$, and thus expected fraction of peak on processor with $B_m = 0.1$ is 0.05, or 5%

do
$$i=1,N$$

A(i) = B(i) + C(i) * D(i)
enddo

* Reciprocal of code balance, $1/B_c = F/W$, called *computational intensity* of code, provides measure of potential data reuse

STREAM Benchmarks

 STREAM benchmarks are simple loop kernels commonly used to characterize memory performance

type	kernel	DP words	flops	B _c
COPY	A(:)=B(:)	2 (3)	0	N/A
SCALE	A(:)=s*B(:)	2 (3)	1	2.0 (3.0)
ADD	A(:)=B(:)+C(:)	3 (4)	1	3.0 (4.0)
TRIAD	A(:)=B(:)+s*C(:)	3 (4)	2	1.5 (2.0)

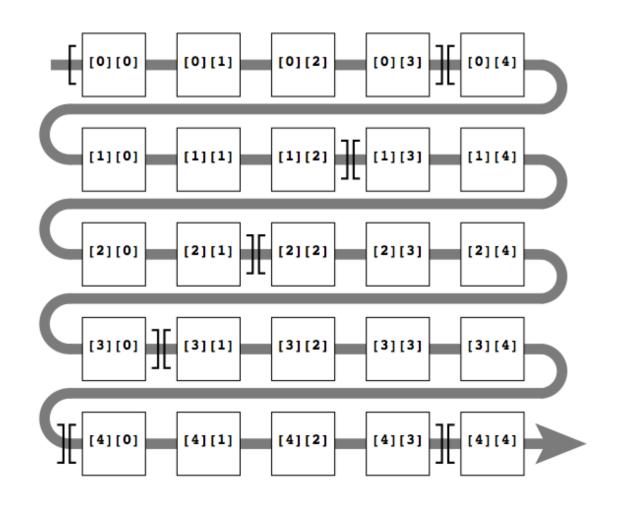
- Unfortunately, even these simple loops often fail to attain substantial fraction of peak performance
- STREAM benchmarks generally provide upper bound on performance expected of more realistic codes

Storage Order

- Multidimensional arrays, especially two-dimensional matrices, are extremely common in scientific codes
- Machine memory layout is inherently one-dimensional, divided into cache lines
- Mapping of multidimensional arrays to one-dimensional memory, as well as order in which array entries are accessed, dramatically affect cache behavior of array-based programs
- For example, *strided* access to one-dimensional array (accessing every *k*th entry rather than consecutive entries) reduces spatial locality and effective utilization of memory bandwidth
- Different programming languages have different conventions for storing multidimensional arrays

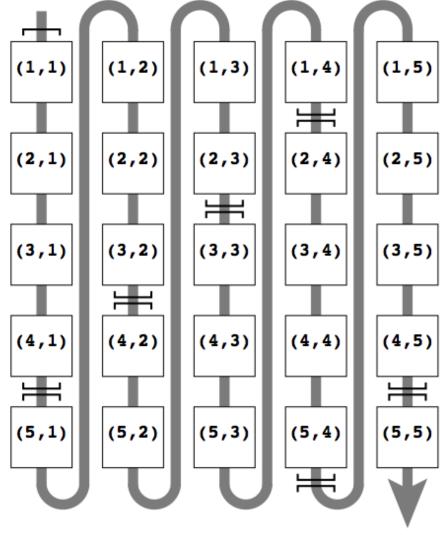
Row Major Order

 C and its variants store arrays in row major order, i.e., last subscript varies most rapidly



Column Major Order

 Fortran stores arrays in column major order, i.e., first subscript varies most rapidly



Strided Memory Access

 Because of different array storage orders, similar codes in different languages may access memory with different strides

Stride-1 access
for(i=0; i <n; ++i)="" th="" {<=""></n;>
for(j=0; j <n; ++j)="" td="" {<=""></n;>
a[i][j] = i*j;
}
}

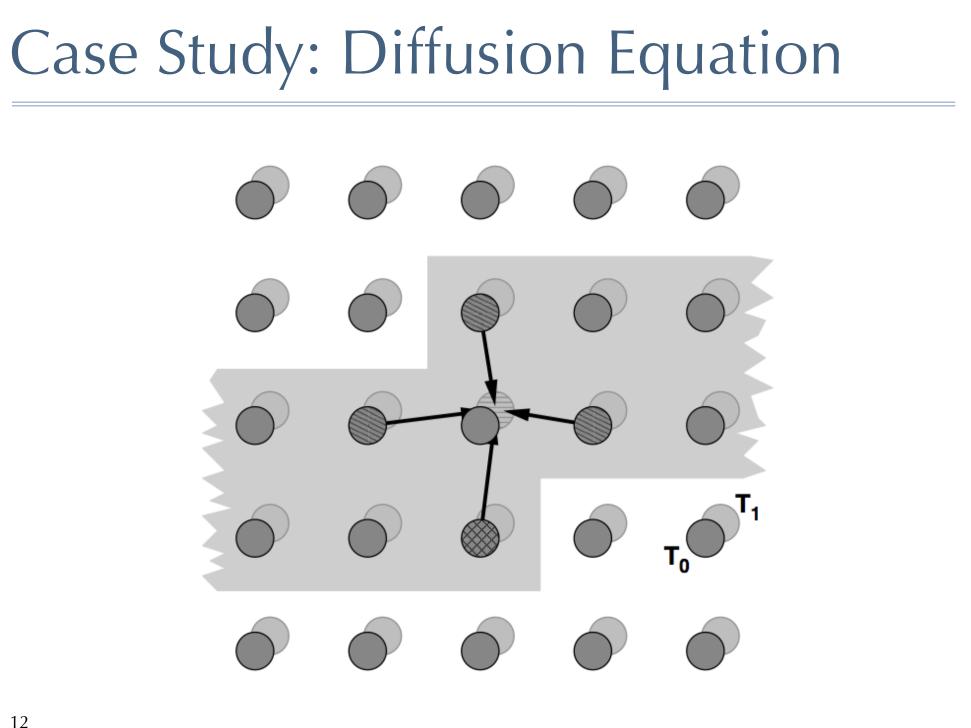
 To optimize memory access, inner loop variable indexing multidimensional array should be chosen to ensure stride-one access (first index in Fortran, last index in C)

Case Study: Diffusion Equation

- * Diffusion equation given by $\frac{\partial \Phi}{\partial t} = \Delta \Phi$
- Jacobi method for solving finite difference discretization

$$\frac{\delta \Phi(x_i, y_i)}{\delta t} = \frac{\Phi(x_{i+1}, y_i) + \Phi(x_{i-1}, y_i) - 2\Phi(x_i, y_i)}{(\delta x)^2} \\ + \frac{\Phi(x_i, y_{i-1}) + \Phi(x_i, y_{i+1}) - 2\Phi(x_i, y_i)}{(\delta y)^2}$$

- Sweep through two-dimensional grid in some order, updating solution at each grid point by contributions from four neighboring grid points
- Requires two copies of solution array, as solution values cannot be overwritten until sweep is complete



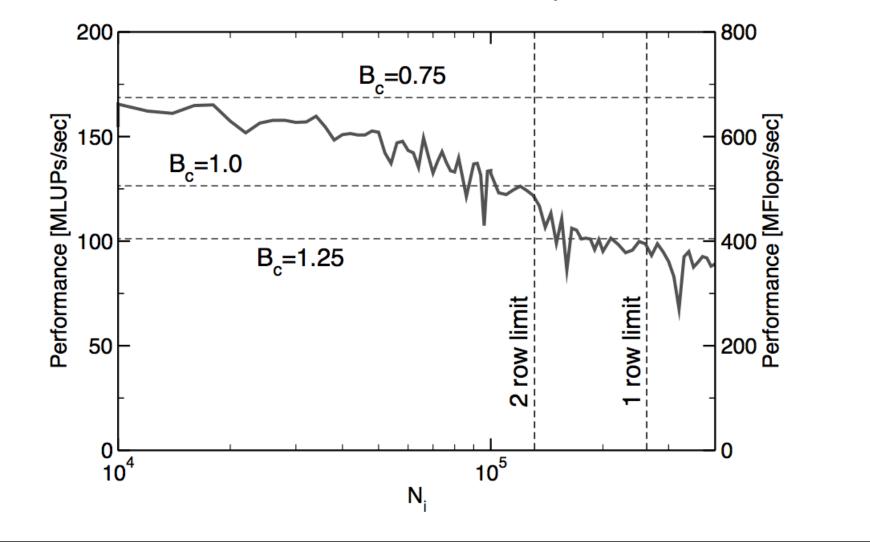
Case Study: Diffusion Equation

```
1 double precision, dimension(0:imax+1,0:kmax+1,0:1) :: phi
2 integer :: t0,t1
3 t0 = 0 ; t1 = 1
4 do it = 1, it max
                   ! choose suitable number of sweeps
  do k = 1, kmax
5
      do i = 1, imax
6
         ! four flops, one store, four loads
7
         phi(i,k,t1) = (phi(i+1,k,t0) + phi(i-1,k,t0))
8
                        + phi(i,k+1,t0) + phi(i,k-1,t0) ) * 0.25
Q
      enddo
10
  enddo
11
12 ! swap arrays
    i = t0 ; t0=t1 ; t1=i
13
14 enddo
```

 Depending on cache line size, problem dimensions, and order of traversal, neighboring points may still be in cache from previous access

Case Study: Diffusion Equation

 Performance graph shows decline in performance when problem size exceeds cache size and code becomes memory bound

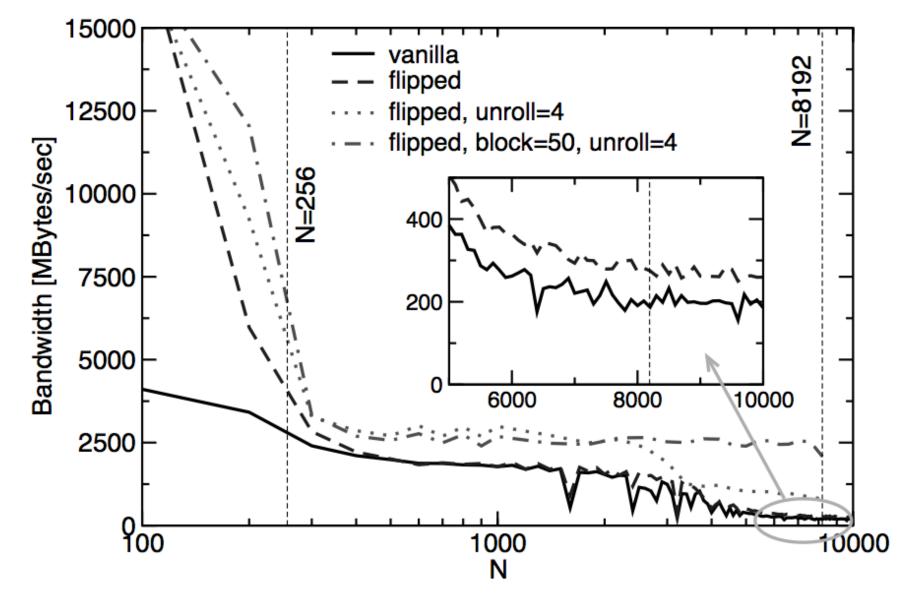


- * Calculating transpose of dense matrix, $A = B^T$, involves no arithmetic operations, but illustrates performance issues in accessing memory
- * Access to either *A* or *B* must be strided

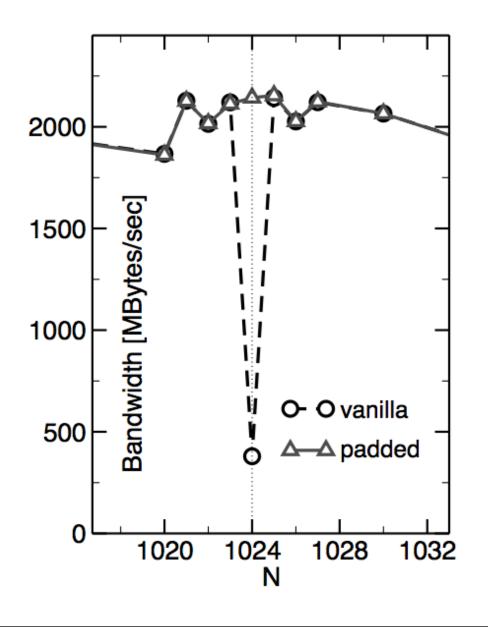
```
1 do i=1,N
2 do j=1,N
3 A(i,j) = B(j,i)
4 enddo
5 enddo
```

- Strided write more expensive than strided read because of write allocate
- Moving index i to inner loop changes access from strided writes to strided reads ("flipped")

- * If both matrices fit in cache (2 $N^2 \le C$), code should run at full cache speed despite strided access
- * If matrices are too large to fit in cache, but one row or column fits in cache ($N L_c \le C$), then spatial locality may still allow performance at near full cache speed
- * If matrices are so large that one row or column does not fit in cache $(N L_c > C)$, then spatial locality is lost and performance drops
- TLB (translation lookaside buffer) misses can also dramatically affect performance
- TLB caches mapping between logical and physical memory pages



- If dimension of matrix N happens to match cache line size, then strided access can cause cache thrashing
- Padding array can eliminate this effect



Algorithm Classification

- Algorithms can be classified according to ratio of number of arithmetic operations to number of data items involved
- For example,
 - vector addition: *O*(*N*) arithmetic operations, *O*(*N*) data
 - matrix-vector multiplication: $O(N^2)$ operations, $O(N^2)$ data
 - matrix-matrix multiplication: $O(N^3)$ operations, $O(N^2)$ data
- Opportunities for reusing data already in cache are obviously greater when number of operations greatly exceeds number of data items

O(N)/O(N)

- When number of operations and number of data items are both proportional to problem size, opportunities for data reuse are limited and performance is generally memory bound
- Although loops are not nested, multiple loops can potentially combined to reduce number of loads, as in *loop fusion*

```
1 do i=1,N

2 A(i) = B(i) + C(i)

3 enddo

4 do i=1,N

5 Z(i) = B(i) + E(i)

6 enddo

1 optimized

1 optimized

do i=1,N

1 optimized

do i=1,N

2 (i) = B(i) + C(i)

2 (i) = B(i) + E(i)

enddo

enddo

1 end
```

Compilers can often apply this optimization

$O(N^2)/O(N^2)$

- This type of algorithm usually involves nested loops with two levels
- Consider code for matrix-vector multiplication

```
1 do i=1,N
2 tmp = C(i)
3 do j=1,N
4 tmp = tmp + A(j,i) * B(j)
5 enddo
6 C(i) = tmp
7 enddo
```

- Matrix *A* is loaded once, but vector *B* is loaded *N* times, once for each iteration of outer loop
- We can fuse N inner loops by *loop unrolling*, traversing outer loop with stride m and replicating inner loop m times
- This technique is called *unroll and jam*

Examples: Unroll and Jam

Matrix-vector multiply

```
1 ! remainder loop ignored
2 do i=1,N,m
    do j=1,N
3
  C(i) = C(i) + A(j,i) * B(j)
4
   C(i+1) = C(i+1) + A(j,i+1) * B(j)
5
    ! m times
6
7
      . . .
      C(i+m-1) = C(i+m-1) + A(j,i+m-1) * B(j)
8
    enddo
9
10 enddo
```

Matrix transpose

```
1 do j=1,N,m
2 do i=1,N
3 A(i,j) = B(j,i)
4 A(i,j+1) = B(j+1,i)
5 ...
6 A(i,j+m-1) = B(j+m-1,i)
7 enddo
8 enddo
```

Example: Loop Blocking

- Loop blocking can achieve optimal cache line use
- Does not reduce loads or stores, but increases cache hit ratio
- Example: matrix transpose

```
1 do jj=1,N,b
     jstart=jj; jend=jj+b-1
2
    do ii=1,N,b
3
       istart=ii; iend=ii+b-1
4
       do j=jstart, jend, m
5
         do i=istart, iend
6
           a(i,j) = b(j,i)
7
           a(i,j+1) = b(j+1,i)
8
9
            . . .
            a(i,j+m-1) = b(j+m-1,i)
10
         enddo
11
       enddo
12
     enddo
13
  enddo
14
```

$O(N^3)/O(N^2)$

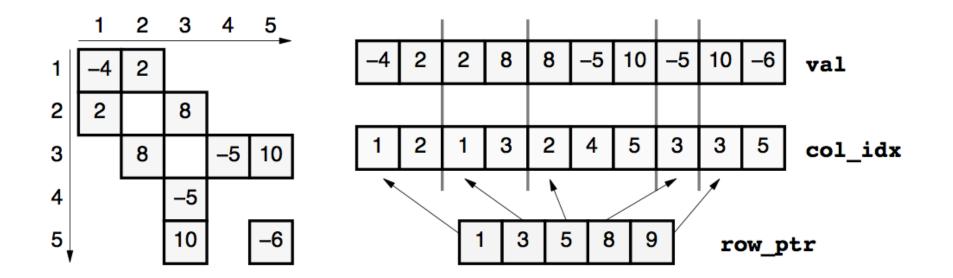
- When number of arithmetic operations exceeds number of data items by factor that grows with problem size, opportunities for reuse of data are greatly enhanced
- This type of algorithm usually involves nested loops with three levels, such as matrix-matrix multiplication
- Carefully chosen blocking and unrolling can often make code cache bound rather than memory bound
- Many vendors provide highly optimized libraries of routines for common operations of linear algebra involving dense vectors and matrices, such as BLAS (Basic Linear Algebra Subprograms), LAPACK, etc.

Sparse Matrix-Vector Multiply

- Many large matrices that arise in practice are *sparse*, with most of their entries being zero
- Sparse matrices typically have constant number of nonzero entries per row or column, and hence have O(N) nonzero entries overall
- To take advantage of sparsity, special data structures must be used that store only nonzero entries and information on their location in matrix
- * Two common examples are CRS (Compressed Row Storage) and JDS (Jagged Diagonals Storage)

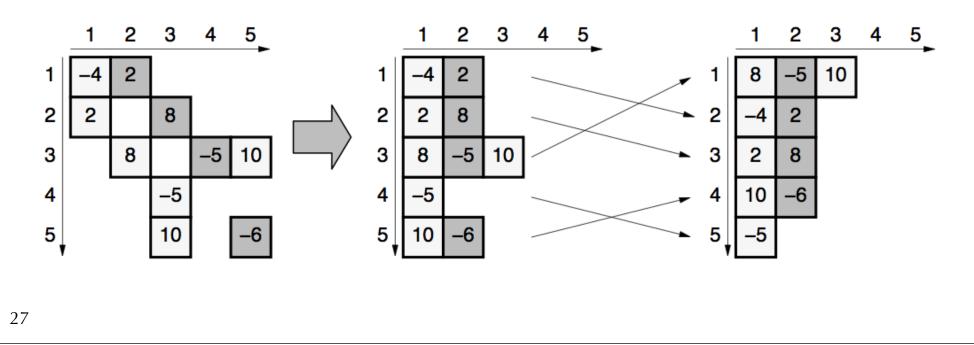
CRS — Compressed Row Storage

- Nonzeros stored row by row in single vector val with no gaps
- Corresponding column indices of nonzeros stored in single vector col_idx
- Pointers to start of each row stored in single vector row_ptr



JDS — Jagged Diagonals Storage

- Nonzeros in each row shifted to left
- Rows sorted by number of nonzeros in descending order
- Columns of resulting array stored consecutively in vector val
- Column indices and start of jagged diagonals stored in col_idx and jd_ptr



Sparse Mat-Vec with CRS and JDS

CRS

* JDS

```
1 do diag=1, N<sub>j</sub>
2 diagLen = jd_ptr(diag+1) - jd_ptr(diag)
3 offset = jd_ptr(diag) - 1
4 do i=1, diagLen
5 C(i) = C(i) + val(offset+i) * B(col_idx(offset+i))
6 enddo
7 enddo
7 enddo
```

CRS vs. JDS for SpMatVec

CRS

- long outer loop, short inner loop
- result vector loaded only once
- nonzeros accessed with stride one
- *W*/*F* balance close to one

* JDS

- short outer loop, long inner loop
- result vector loaded multiple times
- nonzeros accessed with stride one
- *W*/*F* balance close to two

Optimizing SpMatVec with JDS

 Unroll and jam for nonuniform lengths of diagonals requires *loop* peeling, leaving partial diagonals to be processed separately

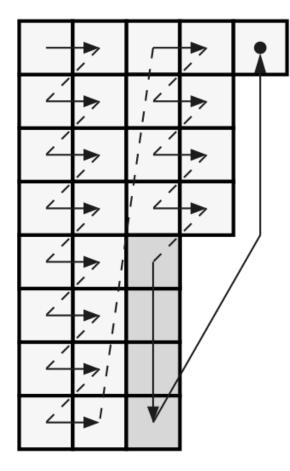
```
1 do diag=1,N_i, 2 ! two-way unroll & jam
    diagLen = min( (jd ptr(diag+1)-jd ptr(diag)) ,
2
                    (jd ptr(diag+2)-jd ptr(diag+1)) )
3
    offset1 = jd ptr(diag) - 1
4
    offset2 = jd ptr(diag+1) - 1
5
    do i=1, diagLen
6
      C(i) = C(i)+val(offset1+i)*B(col idx(offset1+i))
7
      C(i) = C(i)+val(offset2+i)*B(col idx(offset2+i))
8
    enddo
9
    ! peeled-off iterations
10
    offset1 = jd ptr(diag)
11
    do i=(diagLen+1),(jd ptr(diag+1)-jd ptr(diag))
12
      c(i) = c(i)+val(offset1+i)*b(col idx(offset1+i))
13
    enddo
14
  enddo
15
```

Optimizing SpMatVec with JDS

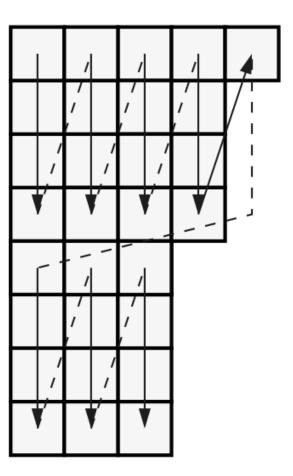
 Can also apply blocking to reduce memory traffic and enhance incache performance

```
1 ! loop over blocks
  do ib=1, N_r, b
2
    block start = ib
3
    block end = min(ib+b-1, N_r)
4
    ! loop over diagonals in one block
5
    do diag=1, N_i
6
      diagLen = jd ptr(diag+1)-jd ptr(diag)
7
      offset = jd ptr(diag) - 1
8
       if(diagLen .ge. block start) then
9
         ! standard JDS sMVM kernel
10
         do i=block start, min(block end, diagLen)
11
           B(i) = B(i)+val(offset+i)*B(col idx(offset+i))
12
         enddo
13
      endif
14
    enddo
15
16 enddo
```

Unrolling vs. Blocking



unrolling factor 2



blocking factor 4

