
Introduction to High Performance 
Computing for Scientists and 
Engineers

Chapter 2: Basic Optimization Techniques for Serial Code



Scalar Profiling
✤ Profiling: gathering data about program’s use of resources

✤ Profiling helps determine which portions of program have greatest 
potential for reducing overall run time through code optimization

✤ Methods of profiling

• code instrumentation (fine detail but high overhead)

• periodic sampling (accuracy depends on length of run)

✤ Levels of profiling

• individual lines

• basic blocks (section of code with one entrance and one exit)

• functions
2



Function Profiling
✤ Most widely used tool for function profiling, gprof, provides data 

on number of calls and time spent in each function in program

✤ In addition to flat profile, can also produce call graph profile 
indicating relationship between calling and called functions

✤ Function profiling may be of little value for functions with many 
lines of code, in which case line-based profiling is more useful

✤ Can also do manual instrumentation by inserting calls to timer

3



gprof call graph profile

• Based on the call graph. 
• One node per subroutine. 
• Arcs join callers to callees:

• Report is one node at a time and its relation to parents and chicren in the call 
graph:



gprof call graph profile - Recursive routines

• Cycles in the call graph (strongly connected components) are collapsed into a 
single node.

• A directed graph is called strongly connected if there is a path from each 
vertex in the graph to every other vertex. In particular, this means paths in 
each direction; a path from a to b and also a path from b to a. (from wikipe-
dia)

• The strongly connected components of a directed graph G are its maximal 
strongly connected subgraphs. (from wikipedia)

•



Hardware Performance Counters
✤ Most modern processors provide hardware performance counters 

that can report number of occurrences of various events

• bus transactions (cache line transfers)

• loads and stores

• floating-point operations

• mispredicted branches

• pipeline stalls

• instructions executed
✤ Appropriate metrics can be derived from these raw data, such as 

instructions per cycle or cache misses per load or store

✤ Data accessible through libraries such as PAPI
4



Compiler Optimization
✤ Most modern compilers offer aggressive levels of code optimization

✤ Occasionally, overly aggressive optimization can lead to incorrect 
results, so spot check your optimized results against unoptimized 
results (e.g., -O3 vs. -Oo)

✤ Many techniques for optimizing code amount to the programmer 
getting out of the compiler’s way and letting it do its thing, for 
example by avoiding programming constructions that inhibit 
compiler optimizations

5



Basic Code Optimizations
✤ Avoid unnecessary work

✤ Avoid expensive operations, for example by strength reduction

✤ Shrink working set (amount of memory touched), for example by 
using smaller word length whenever feasible

✤ Eliminate common subexpressions

✤ Avoid branches in loops

✤ Unroll loops

✤ Avoid function call overhead by inlining

✤ Avoid aliasing
6

x**2.0  vs.  x**2  vs.  x*x



Caveats
✤ Some data types, such as two-byte integers, may not be efficiently 

supported on some processors, so savings in memory may be offset 
by slower processing

✤ Rearrangement of arithmetic expressions, even if mathematically 
legitimate, may alter results (e.g., floating-point arithmetic is not 
associative)

7




