
1 of 54

 

Addendum to Chapter 2

Basic optimization techniques for serial code



2 of 54

Languages 

• Languages are the interface between 
programmers and machines. 

• They affect 
-- Productivity 
-- Performance

• Typically, performance is sacrificed in the name 
of productivity (including portability). There is 
obviously a trade-off. Importance of 
performance should affect choice.
-- Assembly language is best from the point of view 

of performance (assuming unlimited human 
resources). 



3 of 54

-- Fortran 77 and C are, among popular languages, 
second best (for performance)

-- Interpreted languages are slower. Sometimes 
they are dramatically slower. Examples include: 
MATLAB, Python, Java. 

 

Speedup due to compilation of MATLAB



4 of 54

-- Languages originally designed for interpretation can 
be compiled, but performance tends to suffer 
because of language characteristics. Runtime 
specification of types is a problem for performance. For 
MATLAB compilation see L. De Rose, D. Padua, Techniques for the 
translation of MATLAB programs into Fortran90, ACM Trans. on Programming 
Languages and Systems 21 (2) (1999), pp. 286--323.



5 of 54

-- Another example is provided by Java. Implementations 
are required to store arrays in ways that affect 
performance. See: José E. Moreira, Samuel P. Midkiff, Manish Gupta, 
Pedro V. Artigas, Peng Wu, George Almasi The Ninja Project. October 2001    
Communications of the ACM, Volume 44 Issue 10. 



6 of 54

• High-level notations/new languages should be 
studied. Much to be gained.(See G. Bikshandi et al 
Programming for Parallelism and Locality with 
Hierarchically Tiled. Proc. of the International 
Symposium on Principles and Practice of Parallel 
Programming, March 2006.)
-- But .. New languages will not significantly reduce 

the cost of the optimization process 
-- Automatic optimization is needed.
-- Programming languages designed for 

performance should be automatic optimization 
enablers.

-- Need language/compiler co-design.



7 of 54

Compilers

• Program optimization was the objective of 
compilers from the outset.

“It was our belief that if FORTRAN, during its first 
months, were to translate any reasonable “scientific” 
source program into an object program only half as 
fast as its hand coded counterpart, then acceptance 
of our system would be in serious danger.”

John Backus
Fortran I, II and III
Annals of the History of Computing, July 1979.



8 of 54

• Still far from solving the problem. Problems in 
Computer Science seem much easier than they 
are.

• The objective of compilers is to bridge the gap 
between programmer’s world and machine 
world. Between readable/easy to maintain code 
and unreadable high-performing code.



9 of 54

Compiler Optimizations

First, a note about the word optimization.

• It is a misnomer since there is no guarantee of 
optimality.

• We could call the operation code improvement, 
but this is not quite true either since compiler 
transformations are not guaranteed to improve 
the performance of the generated code.



10 of 54

A classification

By the scope

• Peephole optimizations. A local inspection of 
the code to identify and modify inefficient 
sequence of instructions.

• Intraprocedural. Transform the body of a 
procedure or method using information from the 
procedure itself.

• Interprocedural. Uses information from several 
procedures to transform the program. Because 
of separate compilation this type of optimization 
is infrequently applied to complete programs.



11 of 54

By the time of application

• Static. At compile-time
-- Source-to-source
-- Low-level optimizations

• Dynamic. At execution time.

By the source of the information

• Code only

• Code plus user assertions

• Code plus profile information.



12 of 54

Which optimizations to include?

• The optimizations must be effective across the 
broad range of programs typically encountered. 

• Also important is the time it takes to apply the 
optimization. A slow compiler is not desirable 
(and for some transformations the compiler can 
become very slow).



13 of 54

Order and repetition of optimizations

A possible order of optimizations, shown in the 
figure below, is from S. Muchnick’s book 
“Advanced compiler design implementation”.

Two quotes from that book:
“One can easily invent examples to show that no order can 
be optimal for all programs.”

“It is easy to invent programs that will benefit from any 
number of repetitions of a sequence of optimizing 
transformations. While such examples can be constructed, 
it is important to note that they occur very rarely in practice. 
It is usually sufficient to apply the transformations that 
make up an optimizer once, or at most twice to get all or 
almost all the benefit one is likely to derive from them.”

The second phrase and the statements in the 
previous slide are illustrations of the limitations of 
compilers. They are part of the reason why 
manual optimizations are needed.



14 of 54



15 of 54



16 of 54

Assignment statement optimizations



17 of 54

• Constant-expressions evaluation or constant folding, 
refers to the evaluation at compile time of 
expressions whose operands are known to be 
constant.

• Interprocedural constant propagation is particularly 
important when procedures or macros are passed 
constant parameters.

• Although it is apparently a relatively simple 
transformation, compilers do not do a perfect job at 
recognizing all constant expressions as can be seen 
in the next three examples from the Sparc Fortran 
compiler.

• In fact, constant propagation is undecidable.



18 of 54

#include <stdio.h>
int pp( )
{
int ia =1;
int ib =2;
int result;

result = ia +ib;
return result;

}�

pp.c cc -O3 -S pp.c

• .global pp
pp:

/* 000000            */         retl ! Result =  %o0
/* 0x0004            */         or      %g0,3,%o0
/* 0x0008          0 */         .type   pp,2
/* 0x0008            */         .size   pp,(.-pp)



19 of 54

int pp(int id){
int ic, ia, ib;
if (id == 1) {

ia =1;
ib =2; }

else {
ia =2;
ib =1;}

ic = ia + ib;
return ic;

}

pp1.c cc -O3 -S pp1.c
!    3                !int pp(int id){
!    4                !  int ic, ia, ib;
!    5                !  if ( id == 1) {
/* 000000          5 */         cmp %o0,1
/* 0x0004            */         bne .L77000003
/* 0x0008            */         or      % g0,1,%g1

.L77000002:
!    6                !    ia =1;
!    7                !    ib =2; } 
/* 0x000c          7 */         o r      % g0,2,%g2
/* 0x0010            */         retl ! Result =  %o0
/* 0x0014            */         add     %g1,% g2,%o0

.L77000003:
!    8                !  e lse {
!    9                !    ia =2;
/* 0x0018          9 */         or      % g0,2,% g1
!   10                !    ib =1;}
/* 0x001c         10 */         or      %g0,1,%g2
/* 0x0020            */         retl ! Result =  %o0
/* 0x0024            */         add     %g1,% g2,%o0
/* 0x0028          0 */         .type   pp,2
/* 0x0028            */         .size   pp,(.-pp)



20 of 54

int pp() {
int ic, ia, ib;
int id =1;
if (id == 1) {

ia =1;
ib =2; }

else {
ia =2;
ib =1;}

ic = ia + ib;
return ic;

}

pp2.c cc -O3 -S pp1.c

.global pp
pp:

/* 000000            */         retl ! Result =  %o0
/* 0x0004            */         or      %g0,3,%o0
/* 0x0008          0 */         .type   pp,2
/* 0x0008            */         .size   pp,(.-pp)



21 of 54

• Replaces aggregates such as structures   and 
arrays with scalars to facilitate other 
optimizations such as register allocation, 
constant and copy propagation.



22 of 54

DO I = 1, N
DO J = 1, M

A(I)=A(I)+B(J)
ENDDO

ENDDO

• A(I) can be left in a 
register throughout the 
inner loop

• Register allocation 
fails to recognize this

DO I = 1, N
T = A(I)
DO J = 1, M

T = T + B(J)
ENDDO
A(I) = T

ENDDO

• All loads and stores to 
A in the inner loop 
have been saved

• High chance of T 
being allocated a 
register by the coloring 
algorithm



23 of 54

• Algebraic simplification uses algebraic 
properties of operators or particular operand 
combinations to simplify expressions.

• Reassociation refers to using associativity, 
commutativity, and distributivity to divide an 
expressions into parts that are constant, loop 
invariant and variable.



24 of 54

For integers:

Expression simplification such as 
i+0 -> i
i ^ 2  -> i * i 
i*5 -> t := i shl 3; t=t-I

Associativity and distributivity can be applied to 
improve parallelism (reduce the height of 
expression trees). 

Algebraic simplifications for floating point 
operations are seldom applied. 

The reason is that floating point numbers do not 
have the same algebraic properties as real 
numbers. 



25 of 54

For example, in the code

eps:=1.0
while eps+1.0>1.0

oldeps := eps
eps:=0.5 * eps

Replacing eps+1.0 > 1.0 with eps > 0.0 would 
change the result significantly. The original form 
computes the smallest number such that 1+ x = x 
while the optimized form computes the maximal x 
such that x/2 rounds to 0.



26 of 54

• The goal is to reduce height of expression tree 
to reduce execution time

• In a parallel environment
+

a ++

++

++

b

c

d e

+

a

++

++

++
b c

d e



27 of 54

• Transform the program so that the value of a 
(usually scalar) expression is saved to avoid 
having to compute the same expression later in 
the program.

For example:
x = e^3+1
<statement sequence>
y= e^3

• is replaced (assuming that e is not reassigned in 
<statement sequence>) with

t=e^3
x = t+1
<statement sequence>
y=t

• There are local (to the basic block), global, and 
interprocedural versions of cse.



28 of 54

Eliminates unnecessary copy operations.

For example:
x = y
<statement sequence>
t = x + 1

Is replaced (assuming that neither x nor y are 
reassigned in <statement sequence>) with
<statement sequence>
t = y + 1

Copy propagation is useful after common 
subexpression elimination. For example.
x = a+b
<statement sequence>
z=x
y = a+b



29 of 54

Is replaced by CSE into the following code
t = a+b
x = t
<statement sequence>
z = x
y = t

Here x = t can be eliminated by copy 
propagation.



30 of 54

Loop body optimizations



31 of 54

Recognizes computations in loops that produce 
the same value on every iteration of the loop and 
moves them out of the loop.

An important application is in the computation of 
subscript expressions:

do i=1,n
do j=1,n

…a(j,i)….

Here a(j,i) must be transformed into something 
like a((i-1)*M+j-1) where (i-1)*M is a loop 
invariant expression that could be computed 
outside the j loop.



32 of 54

.L95:
!    8     a[i][j]=0;
sethi%hi(.L_cseg0),%o0
ld[%o0+%lo(.L_cseg0)],%f2
sethi39,%o0
xor%o0,-68,%o0
add%fp,%o0,%o3
sethi39,%o0
xor%o0,-72,%o0
ld[%fp+%o0],%o2
sll%o2,4,%o1
sll%o2,7,%o0
add%o1,%o0,%o1
sll%o2,8,%o0
add%o1,%o0,%o0
add%o3,%o0,%o1
sethi39,%o0
xor%o0,-76,%o0
ld[%fp+%o0],%o0
sll%o0,2,%o0
st%f2,[%o1+%o0]
sethi39,%o0
xor%o0,-76,%o0
ld[%fp+%o0],%o0
mov%o0,%o2
sethi39,%o0
xor%o0,-76,%o0
ld[%fp+%o0],%o0
add%o0,1,%o1
sethi39,%o0
xor%o0,-76,%o0
cmp%o2,%g0
bne.L95
st%o1,[%fp+%o0]

     a[i][j]=0;

...

.L900000109:

or%g0,%o0,%g2
add%o3,4,%o3

add%o0,1,%o0

cmp%g2,0
bne,a.L900000109

st%f0,[%o3] ! volatile

pp1()

{  
  float a[100][100];

  int i,j;

  for (i=1;i++;i<=50)
   for (j=1;j++;j<=50)

     a[i][j]=0;

}

unoptimized

optimized
cc -O3 -S pp1.c



33 of 54

• Induction variables are variables whose 
successive values form an arithmetic 
progression over some part of the program.

• Their identification can be used for several 
purposes:

• Strength reduction (see below).

• Elimination of redundant counters.
do  i=1,n

j=j+2
a(j)=

end

do  i=1,n
a(j+2*i)=

end



34 of 54

• Elimination of interactions between iterations to 
enable parallelization.
-- The following loop cannot be transform as is into 

parallel form
do i=1,n

k=k+3
a(k) = b(k)+1

end do
-- The reason is that induction variable k is both 

read and written on all iterations. However, the 
collision can be easily removed as follows

do i=1,n
a(3*i) = b(3*i) +1
end do

-- Notice that removing induction variables usually 
has the opposite effect of strength reduction.



35 of 54

From Allen, Cocke, and Kennedy “Reduction of Operator 
Strength” in Muchnick and Jones “Program Flow Analysis” AW 
1981.

In real compiler probably only multiplication to 
addition is the only optimization performed.

Candidates for strength reduction include:
1. Multiplication by a constant

loop
n=i*a
...
i=i+b



36 of 54

after strength reduction
t1=i*a
loop

n=t1
...
i=i+b
t1=t1+a*b

after loop invariant removal 

t1 = i*a
c = a*b
loop

n=t1
...
i=i+b
t1=t1+c



37 of 54

2. Two induction variables multiplied by a constant 
and added

loop
n=i*a+j*b
...
i=i+c
...
j=j+d

after strength reduction
loop

n=t1
...
i=i+c
t1=t1+a*c
j=j+d
t1=t1+b*d



38 of 54

3. Trigonometric functions
loop

y=sin(x)
...
x=x+x

After strength reduction
loop

...
x=x+x
tsinx=tsinx*tcosx+tcosx*tsinx
tcosx=tsinx*tsinx+tcosx*tcosx



39 of 54

By propagating assertions it is possible to avoid 
unnecessary bound checks 

For example, bound checks are not needed in:
real a(1000)

do i=1,100
… a(i)…
end do

And they are not needed either in
if i > 1 and i < 1000 then
… a(i)…
end if

A related transformation is predicting the 
maximum value subscripts will take in a region to 
do pre-allocation for languages (like MATLAB) 
where arrays grow dynamically.



40 of 54

Procedure optimizations



41 of 54

• Converts tail recursive procedures into iterative 
form



42 of 54

• Expands inline the procedure.

• This gives the compiler more flexibility in the 
type of optimizations it can apply.

• Can simplify the body of the routine using 
parameter constant values.

• Procedure cloning can be used for this last 
purpose also.

• If done blindly, it can lead to long source files 
and incredibly long compilation times



43 of 54



44 of 54

• Leaf routines tend to be the majority (leafs of 
binary trees are one more than the number of 
interior nodes).

• Save instructions that prepare for further calls 
(set up the stack/display registers, save/restore 
registers)



45 of 54

Register allocation

• Objective is to assign registers to scalar 
operands in order to minimize the number of 
memory transfers.

• An NP-complete problem for general programs. 
So need heuristics. Graph coloring-based 
algorithm has become the standard.



46 of 54

Instruction scheduling

• Objective is to minimize execution time by reordering 
executions.

• Scheduling is an NP-complete problem.



47 of 54

Control-flow optimizations

• Unreachable code is code that cannot be 
executed regardless of the input.

• Eliminating it save space

• It applies to pairs of basic blocks so that the first 
has no successors other than the second and 
the second has no predecessors other than the 
first.



48 of 54

• Applies to conditional constructs one of both of 
whose arms are empty

• Transforms a while loop into a repeat loop.

• Fewer loop bookkeeping operations are needed

• Moves loop-invariant conditional branches out 
of loops

• Eliminates code that do not affect the outcome 
of the program.



49 of 54

Transforms a loop into a doubly nested loop.
for (i=1;i<=100,i++)

{...}

for (K=1;K<=100;k+=20)
for (i=K;i<=K+19;i++) 

{...}

Joins two loops into a single one.



50 of 54

Breaks a loop into two loops
for (i=1;i<=n;i++) {}

for (i=1;i<=n;i++) {}
for (i=1;i<=n;i++) {}

Changes the order of loop headers
for (i=1;i<=n;i++) 

for (j=1;j<=m;j++) {}

for (j=1;j<=m;j++) 
for (i=1;i<=n;i++) {}



51 of 54

This is a combination of strip mining followed by 
interchange that changes traversal order of a 
multiply nested loop so that the iteration space is 
traversed on a tile-by tile basis.
for (i=0; i<N; i++)
    for (j=0; j<N; j++)
        c[i] = a[i,j]*b[i];

for (i=0; i<N; i+=2)
    for (j=0; j<N; j+=2)
        for (ii=i; ii<min(i+2,N); ii++)
            for (jj=j;jj<min(j+2,N); jj++)
                c[ii] = a[ii,jj]*b[ii];



52 of 54

... ... ... ...

...

...

...

...

...

...

...

...

...

...

... ... ... ... ... ... ... ... ... ...

...

...

...

...

...

...

Interchange

Tiling



53 of 54

Compilers vs Manual Programming



54 of 54


