
CS 419: Production Rendering

KD-Trees
BSP-Trees

Eric Shaffer

Some content taken from Physically Based Rendering by Pharr et al.

Lots of types of spatial hierarchies

KD-Tree Oct-Tree BSP-Tree

Taken from Physically Based Rendering by Pharr et al.

Building a kd-tree

¤  Splits are axis-aligned

¤  But we choose location of that
split plane

¤  Alternate the axis that we split

¤  We want a balanced tree to
decrease search time….each
internal node prunes half the
geometry

Building a 2D kd-tree - example

2D kd-tree example

2D KD-tree Build Time

¤  Median finding among n numbers takes O(n) time

¤  What then is the computational cost T(n) for n points?
¤  T(n) = 2T(n/2)+O(n)

¤  T(1) = O(1)

¤  Total build time will be O(n lg n)

3D kd-tree

¤  Very similar…3 alternating axes
instead of 2

¤  Point location done recursively

¤  For n points
¤  O(n) size structure

¤  O(lg n) point location…for balanced
tree…

Splitting in 3D

Looking at costs

Looking at costs

Computing costs for kd-trees

Computing costs for kd-trees

Build Algorithm

Termination Criteria

Simple Traversal

¤  Simple sequential traversal
¤  Find ray entry point to top node bounding box

¤  Traverse kd-tree doing point location

¤  At leaf, test ray against primitives

¤  If no hit, find leaf bbox exit point and repeat search

¤  How is this inefficient?

Stack-based Traversal

Use a stack of nodes to visit to limit repeated visits

Other Speedups

¤  Neighbor links (ropes) to reference sibling cells

¤  Packet tracing: rays with similar origin and direction
traced together through the structure

BSP Tree

¤  Cutting planes have arbitrary orientation

¤  Splitting can be done along ploygon
¤  Choose subset (5?) to test…pick one that yields best balance

Constructing BSP for Point Location

¤  Build using Principal Component Analysis (PCA)

Compute eigenvalues and eigenvectors
Largest eigenvalue è eigenvector indicating direction of greatest variation
Cut at mean perpendicular to that vector

