CS 419: Production Rendering

KD-Trees BSP-Trees

Eric Shaffer

Some content taken from Physically Based Rendering by Pharr et al.

Lots of types of spatial hierarchies

KD-Tree

Oct-Tree

BSP-Tree

Taken from Physically Based Rendering by Pharr et al.

Building a kd-tree

- Splits are axis-aligned
- But we choose location of that split plane
- Alternate the axis that we split
- We want a balanced tree to decrease search time....each internal node prunes half the geometry

Building a 2D kd-tree - example

2D kd-tree example

Algorithm BuildKdTree $(P$, depth $)$

1. if P contains only one point
2. then return a leaf storing this point
3. else if depth is even then Split P with a vertical line ℓ through the median x-coordinate into P_{1} (left of or on ℓ) and P_{2} (right of ℓ)
4. else Split P with a horizontal line ℓ through the median y-coordinate into P_{1} (below or on ℓ) and P_{2} (above ℓ) Create a node v storing ℓ, make $v_{\text {left }}$ the left child of v, and make $v_{\text {right }}$ the right child of v.
5. return v

2D KD-tree Build Time

- Median finding among n numbers takes $O(n)$ time
- What then is the computational cost $T(n)$ for n points?
$\square T(n)=2 T(n / 2)+O(n)$
$\square T(1)=O(1)$
- Total build time will be O(n Ig n)

3D kd-tree

- Very similar... 3 alternating axes instead of 2
- Point location done recursively
- For n points
$\square \mathrm{O}(\mathrm{n})$ size structure
\square O(lg n) point location...for balanced tree...

Splitting in 3D

Split In The Middle: Bad!

Midpoint: makes left and right probabilities equal Cost of R greater than cost of L

Looking at costs

Median: makes left and right costs equal Probability of hitting L greater than R

Looking at costs

Cost-Optimized Split

$\operatorname{Cost}($ node $)=\mathcal{C}_{\text {visit }}+\operatorname{Prob}($ hit L$) * \operatorname{Cost}(\mathrm{~L})+\operatorname{Prob}($ hit R$) * \operatorname{Cost}(\mathrm{R})$

Computing costs for kd-trees

$\operatorname{Cost}($ node $)=C_{\text {visit }}+\operatorname{Prob}($ hit L$) * \operatorname{Cost}(\mathrm{~L})+\operatorname{Prob}($ hit R$) * \operatorname{Cost}(\mathrm{R})$

$\mathrm{C}_{\text {visit }}=$ cost of visiting a note
$\operatorname{Cost}(\mathrm{L})=$ cost of traversing left child
$\operatorname{Cost}(R)=$ cost of traversing right child

Computing costs for kd-trees

- Need the probabilities
- Turn out to be proportional to the surface area
- Need the child cell costs
- Triangle count is a good approximation

$$
\begin{aligned}
\operatorname{Cost}(\text { cell })= & \text { Cuisit }_{\text {vit }}+\operatorname{SurfArea(L)*} \text { * } \operatorname{TriCount(L)+}+ \\
& \text { SurfArea(R) }{ }^{*} \operatorname{TriCount(R)}
\end{aligned}
$$

$C_{\text {trav }}$ is the ratio of the cost to traverse to the cost to intersect
$C_{\text {trav }}=1: 80$ in PBRT
$C_{\text {trav }}=1: 1.5$ in a highly optimized version

Build Algorithm

1.Pick an axis, or optimize across x, y, z
2. Build a set of candidate split locations

- Note: cost extrema must be at bbox vertices
- Vertices of triangle
- Vertices of triangle clipped to node bbox
3.Sort the triangles into intervals

4. Sweep to incrementally track L/R counts, costs
5.0utput position of minimum cost split

Termination Criteria

■ When should we stop splitting?

- Bad: depth limit, number of triangles
- Good: when split does not lower the cost
- Threshold of cost improvement
- Stretch over multiple levels-e.g., terminate if cost doesn't go down after three splits in a row
- Threshold of cell cize
- Absolute probability SA(node)/SA(scene) low

Simple Traversal

- Simple sequential traversal
- Find ray entry point to top node bounding box
\square Traverse kd-tree doing point location
- At leaf, test ray against primitives
- If no hit, find leaf bbox exit point and repeat search

ㅁ How is this inefficient?

Stack-based Traversal

Use a stack of nodes to visit to limit repeated visits

1 Kd-tree Recursive Traversal:
2 begin
(entry distance, exit distance) \leftarrow intersect ray with root's AABB;
4
5
6 end
7 push (tree root node, entry distance, exit distance) to push
while stack is not empty do
(current node, entry distance, exit distance) \leftarrow pop
stack;
while current node is not a leaf do
a \leftarrow current node's split axis;
$\mathrm{t} \leftarrow$ (current node's split position. a - ray origin.a)
/ ray dir.a;
(near, far) \leftarrow classify near/far with (split
position. $\mathrm{a}>$ ray origin.a);
if $t>$ exit distance or $t<0$ then
current node \leftarrow near;
else if $\mathrm{t} \leq$ entry distance then
current node \leftarrow far;
else
push (far, t, exit distance) to stack; current node \leftarrow near;
exit distance $\leftarrow \mathrm{t}$;
end
end
if current node is not empty leaf then
intersect ray with each object;
if any intersection exists inside the leaf then
return closest object to the ray origin;
end
end
end
return no object intersected;
32 end

Other Speedups

- Neighbor links (ropes) to reference sibling cells

- Packet tracing: rays with similar origin and direction traced together through the structure

BSP Tree

- Cutting planes have arbitrary orientation
- Splitting can be done along ploygon
- Choose subset (5?) to test...pick one that yields best balance

Constructing BSP for Point Location

- Build using Principal Component Analysis (PCA)

The scatter matrix is computed by the following equation:
$S=\sum_{k=1}^{n}\left(\boldsymbol{x}_{k}-\boldsymbol{m}\right)\left(\boldsymbol{x}_{k}-\boldsymbol{m}\right)^{T}$
where \boldsymbol{m} is the mean vector
$\boldsymbol{m}=\frac{1}{n} \sum_{k=1}^{n} \boldsymbol{x}_{k}$

Compute eigenvalues and eigenvectors Largest eigenvalue $\boldsymbol{\rightarrow}$ eigenvector indicating direction of greatest variation Cut at mean perpendicular to that vector

