CS 419: Production Rendering

KD-Trees
BSP-Trees

Eric Shaffer

Some content taken from Physically Based Rendering by Pharr et al.

Lots of types of spaftial hierarchies

.0
>0

O

O

5
SaO
O

O

O

SO

O

O

KD-Tree

Oct-Tree

BSP-Tree

Taken from Physically Based Rendering by Pharr et al.

Building a kd-tree

O Splits are axis-aligned

But we choose location of that
split plane

Alternate the axis that we split

We want a balanced free to
decrease search time....each
internal node prunes half the
geometry

Bullding a 2D kd-free - example

lq
(s (r
P4 p5' P9
*P1o
& D2

68 P1 br .
D3 P8

[Pe6

ly Us

2D kd-free example

Algorithm BUILDKDTREE(P, depth)

1. if P contains only one point

2 then return a leaf storing this point

3. else if depth is even

4 then Split P with a vertical line £ through the
median x-coordinate into P; (left of or
on /) and P; (right of /)

5. else Split P with a horizontal line ¢ through
the median y-coordinate into P; (below
or on /) and P, (above /)

6. Vieft <— BUILDKDTREE(P,depth+1)
7. Viight <~ BUILDKDTREE(P,,depth+1)
8. Create a node v storing £, make Vjef; the left

child of v, and make Vyjon the right child of v.
0. return v

2D KD-tree Build Time

O Median finding among n numbers takes O(n) time

O What then is the computational cost T(n) for n pointse
T(n) = 2T(n/2)+O(n)
(1) =0O(1)

O Total build time will be O(n Ig n)

3D kd-free

O Very similar...3 alternating axes
instead of 2

O Point location done recursively

O For n points
O(n) size structure

O(lg n) point location...for balanced
tree...

V7

Splitting in 3D

Split In The Middle: Bad!

A

Midpoint: makes left and right probabilities equal
Cost of R greater than cost of L

Looking at cosfts

Median: makes left and right costs equal
Probability of hitting L greater than R

Looking at cosfts

Cost-Optimized Split

A

Cost(node) = Gyisit + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

Computing costs for kd-frees

Cost(node) = Cyisit + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

Cuisit = cost of visiting a note
Cost(L) = cost of traversing left child
Cost(R) = cost of traversing right child

Computing costs for kd-frees

m Need the probabilities

= Turn out to be proportional to the surface area
® Need the child cell costs

- Triangle count is a good approximation

Cost(cell) = Cyisit + SurfArea(L) * TriCount(L) +
SurfArea(R) * TriCount(R)

Cirav Is the ratio of the cost to traverse to the cost to intersect
Ctrav - 1:80 in PBRT

Ctrav = 1:1.5in a highly optimized version

Build Algorithm

1 oPick an axis, or optimize across x, y, z
2 «Build a set of candidate split locations
* Note: cost extrema must be at bbox vertices

* Vertices of triangle

o Vertices of triangle clipped to node bbox
3 oSort the triangles into intervals
4.Sweep to incrementally track L/R counts, costs
5 «Output position of minimum cost split

)
N

-
O

[N

O

Termination Criteria

B When should we stop splitting?

- Bad: depth limit, number of triangles
- Good: when split does not lower the cost
B Threshold of cost improvement

- Stretch over multiple levels—e.g., terminate if cost doesn’t
go down after three splits in a row

m Threshold of cell cize
- Absolute probability SA(node)/SA(scene) low

Simple Traversal

O Simple sequential traversal
Find ray entry point to top node bounding box
Traverse kd-tfree doing point location

At leaf, test ray against primitives
If no hit, find leaf bbox exit point and repeat search

L

O How is this inefficient?

(a)

(c)

)

Stack-based Traversal

1 Kd-tree Recursive Traversal:

2 begin
3 (entry distance, exit distance) +— intersect ray with root’s
e / \ . AABB;
exit \/ exit 4 if ray does not intersect AABB then
) 5 | return no object intersected;
exit / \ exit 6 end
entry N F F N entry 7 push (tree root node, entry distance, exit distance) to
stack ;
:/ \n 8 while stack is not empty do
1 . / \ i 1 / 9 (current node, entry distance, exit distance) +— pop
t exit exit t
xit stack;
exith 10 while current node is not a leaf do
ent entry entry 1 a 4— current node’s split axis;
/\ entry 12 t+— (current node’s split position.a - ray origin.a)
t \ t /\] / ray dir.a;
2 E/ \D 2 13 (near, far) +— classify near/far with (split
3 3 position.a > ray origin.a);
; + _ + 14 if t > exit distance or t < 0 then
left riaht left rinht 15 f:urrent node < near;
16 else if t < entry distance then
17 | current node < far;
18 else
19 push (far, t, exit distance) to stack:
20 current node <— near;
21 exit distance + t;
Use a stack of nodes to visit to limit repeated visits = end
23 end
24 if current node is not empty leaf then
25 intersect ray with each object;
26 if any intersection exists inside the leaf then
277 | return closest object to the ray origin;
28 end
29 end
30 end
31 return no object intersected;

32 end

Other Speedups

O Neighbor links (ropes) to reference sibling cells

i0 :2

- (B) (C)ﬂ ..
B 1
()

O Packet tracing: rays with similar origin and direction
traced together through the sfructure

(A)

BSP Tree

O Cutting planes have arbitrary orientation

O Splitting can be done along ploygon
Choose subset (52) to test...pick one that yields best balance

Constructing BSP for Point Location

O Build using Principal Component Analysis (PCA)
The scatter matrix is computed by the following equation:

S= i(xk —m) (x, —m)"
k=1

v A
where m is the mean vector

n
- 1
m—'ﬁz xk
k=1

Compute eigenvalues and eigenvectors

Largest eigenvalue = eigenvector indicating direction of greatest variation
Cut at mean perpendicular to that vector

