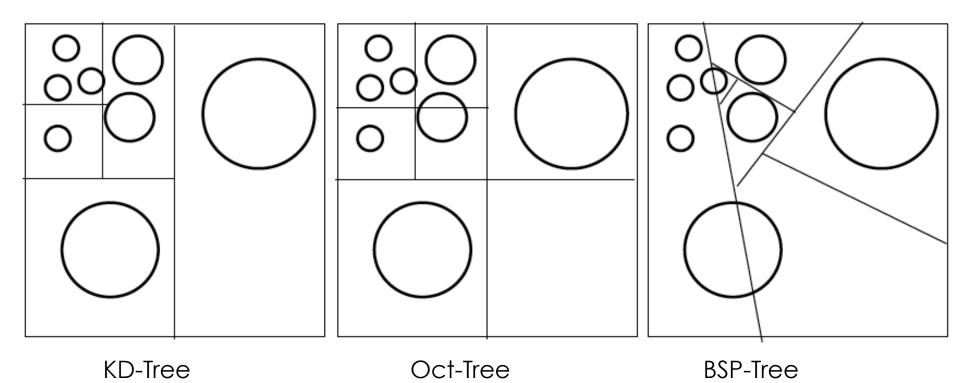
CS 419: Production Rendering

KD-Trees BSP-Trees

Eric Shaffer

Some content taken from Physically Based Rendering by Pharr et al.

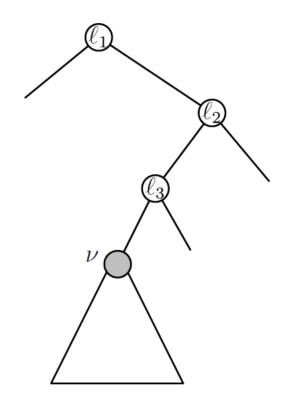
Lots of types of spatial hierarchies



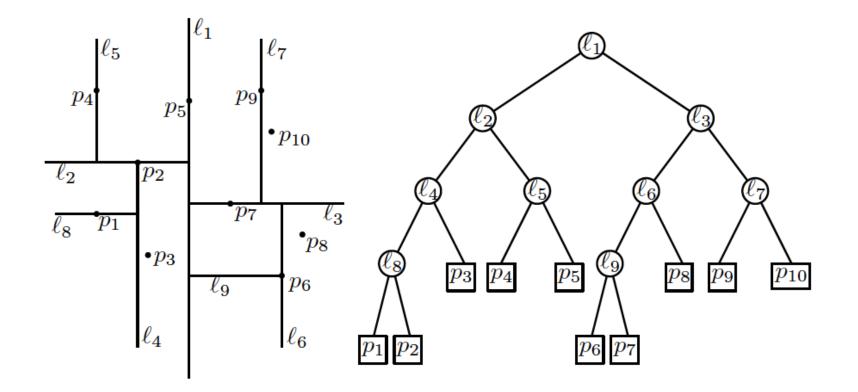
Taken from Physically Based Rendering by Pharr et al.

Building a kd-tree

- Splits are axis-aligned
- But we choose location of that split plane
- Alternate the axis that we split
- We want a **balanced** tree to decrease search time....each internal node prunes half the geometry



Building a 2D kd-tree - example



2D kd-tree example

Algorithm BUILDKDTREE(*P*, *depth*)

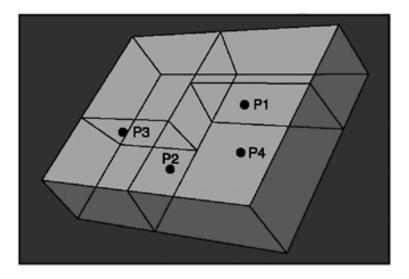
- 1. if P contains only one point
- 2. then return a leaf storing this point
- 3. **else if** *depth* is even
- 4. **then** Split *P* with a vertical line ℓ through the median *x*-coordinate into *P*₁ (left of or on ℓ) and *P*₂ (right of ℓ)
- 5. **else** Split P with a horizontal line ℓ through the median y-coordinate into P_1 (below or on ℓ) and P_2 (above ℓ)
- 6. $v_{\text{left}} \leftarrow \text{BUILDKDTREE}(P_1, depth + 1)$
- 7. $v_{\text{right}} \leftarrow \text{BUILDKDTREE}(P_2, depth+1)$
- 8. Create a node v storing ℓ , make v_{left} the left child of v, and make v_{right} the right child of v.
- 9. return v

2D KD-tree Build Time

- Median finding among n numbers takes O(n) time
- What then is the computational cost T(n) for n points?
 T(n) = 2T(n/2)+O(n)
 - **T**(1) = O(1)
- Total build time will be O(n lg n)

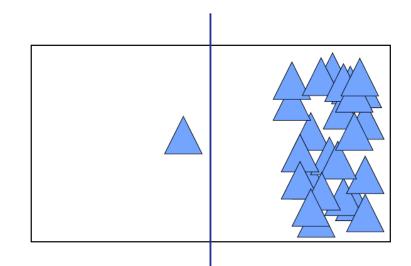
3D kd-tree

- Very similar...3 alternating axes instead of 2
- Point location done recursively
- For n points
 - O(n) size structure
 - O(Ig n) point location...for balanced tree...



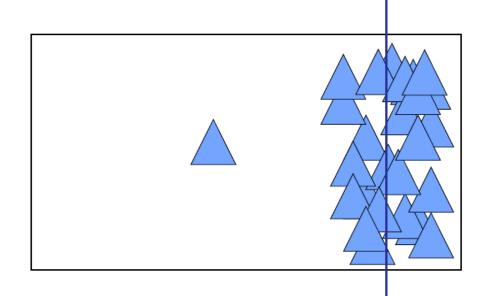
Splitting in 3D

Split In The Middle: Bad!



Midpoint: makes left and right probabilities equal Cost of R greater than cost of L

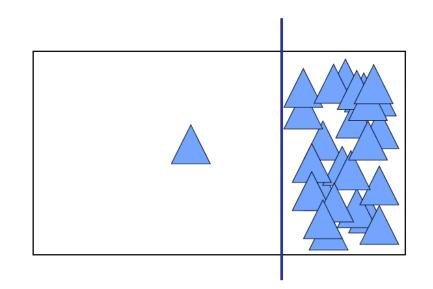
Looking at costs



Median: makes left and right costs equal Probability of hitting L greater than R

Looking at costs

Cost-Optimized Split



Cost(node) = C_{visit} + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

Computing costs for kd-trees

Cost(node) = C_{visit} + Prob(hit L) * Cost(L) + Prob(hit R) * Cost(R)

C_{visit} = cost of visiting a note Cost(L) = cost of traversing left child Cost(R) = cost of traversing right child

Computing costs for kd-trees

- Need the probabilities
 - Turn out to be proportional to the surface area
- Need the child cell costs
 - Triangle count is a good approximation

Cost(cell) = C_{visit} + SurfArea(L) * TriCount(L) + SurfArea(R) * TriCount(R)

 C_{trav} is the ratio of the cost to traverse to the cost to intersect

C_{trav} = 1:80 in PBRT

Ctrav = 1:1.5 in a highly optimized version

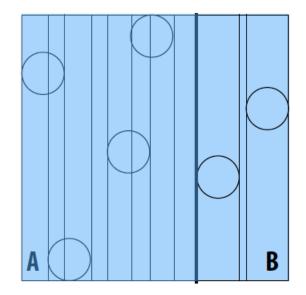
Build Algorithm

1.Pick an axis, or optimize across x, y, z 2.Build a set of candidate split locations

- Note: cost extrema must be at bbox vertices
 - Vertices of triangle
 - Vertices of triangle clipped to node bbox
- **3.**Sort the triangles into intervals

4.Sweep to incrementally track L/R counts, costs

5.Output position of minimum cost split



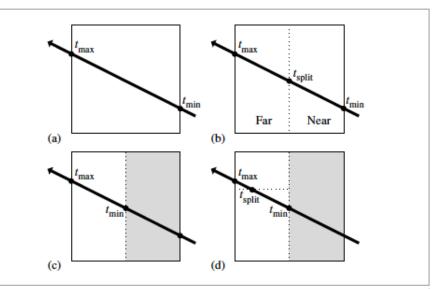
Termination Criteria

- When should we stop splitting?
 - Bad: depth limit, number of triangles
 - Good: when split does not lower the cost
- Threshold of cost improvement
 - Stretch over multiple levels—e.g., terminate if cost doesn't go down after three splits in a row
- Threshold of cell cize
 - Absolute probability SA(node)/SA(scene) low

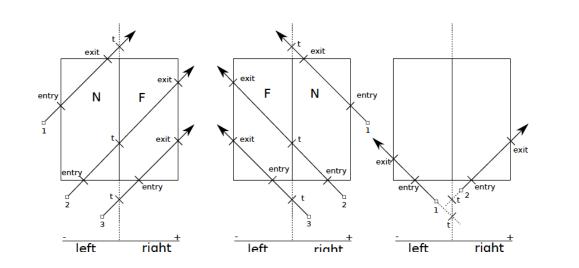
Simple Traversal

- Simple sequential traversal
 - Find ray entry point to top node bounding box
 - Traverse kd-tree doing point location
 - At leaf, test ray against primitives
 - If no hit, find leaf bbox exit point and repeat search

How is this inefficient?



Stack-based Traversal



Use a stack of nodes to visit to limit repeated visits

1	Kd-tree	Recursive	Traversal:
---	---------	-----------	------------

2 begin

5

10

11

12

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27 28

29 30

31

32 end

- 3 (entry distance, exit distance) ← intersect ray with root's AABB;
- 4 if ray does not intersect AABB then
 - return no object intersected;

6 end

- 7 push (tree root node, entry distance, exit distance) to stack ;
- 8 while stack is not empty do
- 9 (current node, entry distance, exit distance) \leftarrow pop stack;
 - while current node is not a leaf do $a \leftarrow$ current node's split axis; $t \leftarrow$ (current node's split position.a - ray origin.a)
 - / ray dir.a;

 $(near, far) \leftarrow classify near/far with (split)$

- position.a > ray origin.a);
- if $t \ge exit$ distance or t < 0 then current node \leftarrow near;
- else if t < entry distance then

current node \leftarrow far;

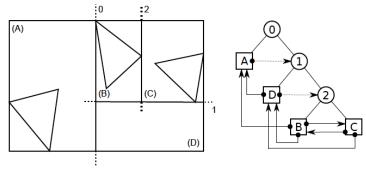
- else
 - push (far, t, exit distance) to stack;
 - current node \leftarrow near;
 - exit distance \leftarrow t;

end

- end if current node *is not empty leaf* then intersect ray with each object; if *any intersection exists inside the leaf* then | return closest object to the ray origin; end end
- end return no object intersected;

Other Speedups

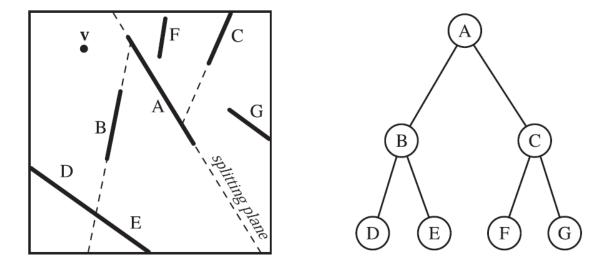
Neighbor links (ropes) to reference sibling cells



Packet tracing: rays with similar origin and direction traced together through the structure

BSP Tree

- Cutting planes have arbitrary orientation
- Splitting can be done along ploygon
 - Choose subset (5?) to test...pick one that yields best balance



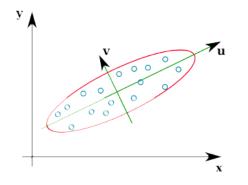
Constructing BSP for Point Location

Build using Principal Component Analysis (PCA)

The scatter matrix is computed by the following equation:

$$S = \sum_{k=1}^{n} (\mathbf{x}_k - \mathbf{m}) (\mathbf{x}_k - \mathbf{m})^T$$

where **m** is the mean vector
$$\mathbf{m} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_k$$



Compute eigenvalues and eigenvectors Largest eigenvalue → eigenvector indicating direction of greatest variation Cut at mean perpendicular to that vector